List of Figures

Figure No.	Caption of the figures	Page No.
Fig 3.1: | A, Map of the northern and northeastern part of the Indian shield showing location of the Shillong plateau. **B**, Regional Geological map of the Shillong plateau showing the location of the study area (**A & B** modified after Chatterjee et al., 2011). **C**, Geological map of the Umpyrtha-Patharkhannah area (**modified after Dash and Chatterjee, 1992, Records of the Geological Survey of India, Vol. 125 part 4**). | 14
Fig.3.2. | The profusion of thin veins and layers of granitic material interrupting the gneissic foliation. | 15
Fig.3.3. | Transformation of Quartzofeldspathic gneiss into homophanous granite due to extensive veining and replacement by granitic materials. | 15
Fig.3.4. | Inclusions of granitoid rocks (G) and pegmatites (P) within migmatitic metapelites. | 16
Fig.3.5. | Concordant amphibolite band showing sharp contact relation to Quartzofeldspathic gneiss. | 16
Fig. 3.6. | Photomicrograph showing growth of biotite grain parallel to axial plane of F₃ fold in metapelites. Note that the F₃ fold axis perpendicular to S₂ foliation, axial planar to F₁ fold (**Plane polarized light**). | 17
Fig. 3.7. | Mineral lineation defined by sillimanite needles in metapelites. | 17
Fig.3.8. | Hook shaped interference structure of F₁ II F₂ fold, developed in Quartzofeldspathic gneiss. | 18
Fig.3.9: | Asymmetric fold (F₂) in Quartzofeldspathic gneiss. | 18
Fig.3.10: | Open fold (F₃) in Quartzofeldspathic gneiss. | 19
Fig.4.1: | Rarely preserved porphyroblastic grains of garnet wrapped around by the biotite + sillimanite + quartz + plagioclase shape preferred aggregates. Note the inclusions of sillimanite and quartz within garnet (**Crossed polarized light**). | 31
Fig.4.2: | Inclusions of relict grains of garnet within cordierite corona. Note that cordierite separates garnet from quartz and sillimanite (**Crossed polarized light**). | 31
Fig.4.3: | Partial wrapping of porphyroblastic cordierite by biotite + sillimanite + quartz defined schistosisty. Note that the inclusion trails of biotite, sillimanite, opaque, quartz are orthogonal to external foliation (**Crossed polarized light**). | 32
Fig.4.4: Symplectitic intergrowth of biotite, sillimanite and quartz along the decomposed face of cordierite (*Crossed polarized light*).

Fig.4.5: Overgrowths of inclusion free rim around pre-existing cordierite. Note that the core of the cordierite is characterized by inclusions of sillimanite, quartz, biotite (*Crossed polarized light*).

Fig.4.6: Intimate intergrowths of chlorite, sillimanite and quartz replacing cordierite (*Plane polarized light*).

Fig.4.7: Stabilization of chlorite and muscovite at the contact between cordierite and k-feldspar (*Plane polarized light*).

Fig. 4.8: Plots of metapelite in mole % CaO/ CaO +MgO +FeO Vs. mole % FeO/ MgO (Wynne – Edward and Hay, 1963)

Fig.4.9: Alternate felsic (quartz, plagioclase) and mafic (hornblende, clinopyroxene) layers in amphibolites showing typical ‘banded gneiss’ (*Plane polarized light*).

Fig.4.10: Typical granoblastic polygonal texture with grain boundary triple point junction in amphibolites (*Crossed polarized light*).

Fig.4.11: Elimination of opaque granules along the border / fracture in green-brown hornblende (*Plane polarized light*).

Fig.4.12: The plagioclase *glomeroporphyroblast* being partially wrapped around by gneissic foliation is presumably taken as restite after pre-S₂ melting. Note that discordant quartz vein displays evidence of post-S₂ melting in Quartzofeldspathic gneisses (*Crossed polarized light*).

Fig.4.13: Growth of secondary muscovite and chlorite replacing partially or completely biotite during fluid induced retrograde cooling (*Plane polarized light*).

Fig.4.14: Alteration of muscovite into chlorite, during retrograde cooling of the Quartzofeldspathic gneisses (*Plane polarized light*).

Fig.4.15: Hypidiomorphic texture exhibited by granitoid rocks. Note that subidiomorphic garnet grain containing inclusions of quartz and biotite (*Crossed polarized light*).

Fig.4.16: The ‘xenolith’ within granitoid rocks shows inclusions of sillimanite within deformed cordierite (*Crossed polarized light*).

Fig.4.17: Granoblastic polygonal texture defined by plagioclase, clinopyroxene, scapolite in calc-silicate gneiss. Note that the alteration of matrix minerals along grain boundaries during fluid enhanced retrogression (*Crossed polarized light*).

Fig.4.18: Stabilization of epidote / clinozoisite and calcite grains due to alteration of clinopyroxene and plagioclase during retrogression (*Crossed polarized light*).

Fig.4.19: The most common banding in iron formation characterized by alternate bands of iron oxide/ silicate layers and layers of platy quartz (*Crossed polarized light*).
Fig. 5.1 Composition of clinopyroxenes in metabasic rocks in Ca – Mg – Fe(total) triangular diagram. (Diop = Diopside, Heden = Hedenbergite). All clinopyroxenes are salite.

Fig. 5.2. Selected compositional parameters of amphibole. Plots of Na + K (A site) versus Al IV. Solid square represent composition of amphiboles.

Fig. 5.3. Plots of Al IV Versus (Al VI +Fe 3+ + 2Ti) of amphiboles (solid square).

Fig. 5.4. (Xmg/Xfe) in cordierite plotted against (Xmg / Xfe) in coexisting garnet in metapelites.

Fig. 5.5. Plots of (Xmg/Xfe) between coexisting clinopyroxene and hornblende in metabasic rocks.

Fig. 5.6. P-T diagram of metamorphic rocks from the Umpyrtha – Patharkhammah area based on different geothermometers and geobarometers with the comparison with relevant experimentally determined reaction curves. Al2SiO5 phase diagram is taken from Holdaway (1971), Clinopyroxene- Orthopyroxene breakdown reaction curves are from Spear (1981), Biotite + Sillimanite + Quartz = Cordierite + Garnet + Melt reaction curve from petrogenetic grid for partial melting of pelitic rocks in the NCKFMASH system (Spear et al.,1999) and Garnet + Sillimanite + Quartz = Cordierite curve are taken from Nichols et al.,1992. Open circle area represents P-T condition derived from metapelites. Filled circle represents near-peak condition as derived from metabasic rocks. The P-T path deduced from Cordierite-Garnet metapelites records near isothermal decompression (ITD) path in the late- retrograde event (See in the text).

Fig. 6.1. BSE image of monazite (A-D) and xenotime (E).

Fig. 6.2. P+Y+REE(apfu) versus Th+U+Si (apfu) plots. Note that most of the analysed monazites belongs to the cheralite type substitution with a minor huttonite component.

Fig. 6.3: Chemical age with uncertainty of Umpyrtha –Patharkhammah monazites and weighted- mean age distribution with corresponding cumulative histograms of each sample (A-H) homogenous monazite domains as well as xenotime domains (I-J).