RECENT TRENDS IN CONVERGENCE AND SUMMABILITY OF GENERAL ORTHOGONAL SERIES

SUMMARY OF THE THESIS

PRESENTED TO
THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA
FOR THE AWARD OF DEGREE OF

DOCTOR OF PHILOSOPHY
IN
APPLIED MATHEMATICS

BY
SHILPA PATEL

UNDER THE GUIDANCE OF
DR. DHANESH P. PATEL
PROFESSOR

DEPARTMENT OF APPLIED MATHEMATICS
FACULTY OF TECHNOLOGY AND ENGINEERING
THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA
KALABHAVAN, VADODARA - 390001
INDIA
April 2018
1.0 Introduction, History and its Origin:

Since the 18th century, the research of Bernoulli D., Bessel F., Euler L., Laplace P., and Legendre A. contains special orthonormal systems and expansion of a functions with respect to orthonormal systems in the subjects like astronomy, mathematics, mechanics, and physics. Researches of some of the researchers mentioned below suggest the strong requirement of development of theory of orthogonal series:

- The research of Chebyshev P.L. on the problem of moments and interpolation.
- The research of Hilbert D. on integral equation with symmetric kernel.
- The research of Fourier J. on the Fourier method for solving the boundary value problems of mathematical physics.
- The research by Lebesgue H. for measure theory and the Lebesgue integral.
- The research of Sturm J. and Liouville J. in the area of partial differential equations.

There was a remarkable progress of the theory of general orthogonal series during 20th century. Several researchers have made use of orthonormal systems of functions and orthogonal series in the areas like computational mathematics, functional analysis, mathematical physics, mathematical statistics, operational calculus, quantum mechanics, etc..

Looking to this scenario: the question of convergence and summability of general orthogonal series have made an important impact on several researchers. The researchers like Alexits G., Fejér L., Hardy G. H., Hilbert D., Hobson E., Kaczmarz S., Lebesgue H., Leindler L., Lorentz L., Meder M., Menchoff D., Riesz F., Riesz M., Steinhaus H., Tandori K., Weyl H., Zygmund A. and many other leading mathematicians have made an important contribution in the areas of convergence, summability and approximation problems of general orthogonal series.

2.0 Orthogonal Series and Orthogonal Expansion:
A series of the form

\[\sum_{n=0}^{\infty} c_n \phi_n(x) \quad (1) \]

cn are the expansion coefficients of function fn(x).

for some function fn(x), then (1) is called the orthogonal expansion of function fn(x). We shall express this relation by the formula

\[fn(x) \sim \sum_{n=0}^{\infty} c_n \phi_n(x) \quad (2) \]

In this case, we shall call the numbers c0, c1, c2, ..., the expansion coefficients of function fn(x).
3.0 Double Orthogonal Series:

Let \(\{ \varphi_{mn}(x, y) \}; m, n = 0, 1, 2, \ldots \) be a double sequence of functions in the rectangle
\[
R = \{(x, y) / a \leq x \leq b, c \leq y \leq d\}
\]
such that
\[
\iint_{R} \varphi_{mn}(x, y) \varphi_{kl}(xy) \, dx \, dy = \begin{cases} 0, & m \neq k, n \neq l \\ 1, & m = k, n = l. \end{cases}
\]

The series
\[
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{mn} \varphi_{mn}(x, y) \tag{3}
\]
where \(\{c_{mn}\} \) is an arbitrary sequence of real numbers is called a double orthogonal series.

The series (3) is called double orthogonal expansion of the function
\[
f(x, y) \in L^2(a \leq x \leq b, c \leq y \leq d)
\]
with respect to an orthonormal system of the function \(\{ \varphi_{mn}(x, y) \} \) if the coefficient \(c_{mn} \) is given by
\[
c_{mn} = \iint_{R} \varphi_{mn}(x, y) f(x, y) \, dx \, dy
\]
and is denoted by
\[
f(x, y) \sim \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{mn} \varphi_{mn}(x, y)
\]

3.1 Different summabilities

Now, we would like to define different summability methods which will be used in later part of our thesis.

In each summability methods, we consider an infinite series of the form
\[
\sum_{n=1}^{\infty} u_n \tag{4}
\]
where, \(\{s_n\} \) be the sequence of partial sums of (4).

3.1.1 Banach Summability

Let ω and l_∞ be the linear spaces of all sequences and bounded sequences respectively on \mathbb{R}. A linear functional defined on l and defined on l_∞ is called a limit functional if and only if l satisfies:

(i) For $e = (1,1,1 \ldots)$

 $l(e) = 1$;

(ii) For every $x \geq 0$, that is to say,

 $x_n \geq 0, \forall n \in \mathbb{N}, x \in l_\infty, l(x) \geq 0$;

(iii) For every $x = \{x_n\} \in l_\infty$

 $l(x) = l(\tau(x))$

where τ is the shift operator on l_∞ such that $\tau(x_n) = (x_n + 1)$.

Let $x \in l_\infty$ and l be the functional on l_∞, then $l(x)$ is called the “Banach limit” of x.

(Banach, S. 1932)

A sequence $x \in l_\infty$ is said to be Banach summable if all the Banach limits of x are the same.

Similarly, a series (4) with the sequence of partial sums $\{s_n\}$ is said to be Banach summable if and only if $\{s_n\}$ is Banach summable.

Let the sequence $\{t_k^*(n)\}$ be defined by

$$t_k^*(n) = \sum_{v=0}^{k-1} s_{n+v}, k \in \mathbb{N}$$

Then $t_k^*(n)$ is said to be the k^{th} element of the Banach transformed sequence.

If

$$\lim_{k \to \infty} t_k^*(n) = s$$

a finite number, uniformly for all $n \in \mathbb{N}$, then (4) is said to be Banach summable to s.

Thus, if

$$\sup_{n} |t_k^*(n) - s| \to 0, as k \to \infty$$

then, (4) is Banach summable to s.

3.1.2 Absolute Banach Summability

If

$$\sum_{k=1}^{\infty} |t_k^*(n) - t_{k+1}^*(n)| < \infty,$$
uniformly for all \(n \in N \), then the series (4) is called absolutely Banach summable (Lorentz, G. 1948) or \(|B| \)-summable, where \(t_k^*(n) \) is defined according to (1-13).

3.1.3 Cesàro Summability

(Cesàro, E. 1890, Chapman, S. 1910, Chapman, S. et al. 1911, Knopp, K. 1907.)

Let \(\alpha > -1 \)

Suppose \(A_n^\alpha \) denote

\[
\frac{\Gamma(n + \alpha + 1)}{\Gamma(\alpha + 1)\Gamma(n + 1)} \quad \text{or} \quad \left(\frac{n + \alpha}{n} \right).
\]

The sequence \(\sigma_n^\alpha \) defined by sequence-to-sequence transformation

\[
\sigma_n^\alpha = \frac{1}{A_n^\alpha} \sum_{u=0}^{n} A_n^{\alpha-1} s_u
\]

is called Cesàro mean or \((C, \alpha)\) mean of the series (4)

The series (4) is said to be summable by the Cesàro method of order \(\alpha \) or summable \((C, \alpha)\) to sum \(s \) if

\[
\lim_{n \to \infty} \sigma_n^\alpha = s
\]

where, \(s \) is a finite number.

3.1.4 Absolute Cesàro Summability

If

\[
\sum_{n=1}^{\infty} |\sigma_n^\alpha - \sigma_{n-1}^\alpha| < \infty,
\]

then, the series (4) is said to be absolutely \((C, \alpha)\) summable or \(|C, \alpha|\) summable, where, \(\{\sigma_n^\alpha\} \) is according to (7).

3.1.5 Euler Summability

(Hardy, G. H. 1949, Bhatnagar, S. C. 1973)

The \(n \)th Euler mean of order \(q \) of the series (4) is given by

\[
T_n^q = \frac{1}{(q + 1)^n} \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) q^{n-k} s_k
\]

The series (4) is said to be \((E, q)\) summable to the sum \(s \) or Euler summable to the sum \(s \)

If

\[
\lim_{n \to \infty} T_n^q = s
\]

where, \(s \) is a finite number.
In particular, if we take \(q = 1 \) then \((E, q)\) summability reduces to \((E, 1)\) summability.

Hence, the series (4) is said to be \((E, 1)\) summable to the sum \(s \), if

\[
\lim_{n \to \infty} T_n^q = \lim_{n \to \infty} \frac{1}{2^n} \sum_{k=0}^{n} \binom{n}{k} s_k = s
\]

(9)

where \(s \) is a finite number.

3.1.6 Absolute Euler Summability

If

\[
\sum_{n=1}^{\infty} |T_n^q - T_{n-1}^q| < \infty,
\]

then, the series (4) is said to be absolutely \((E, q)\) summable or \(|E, q|\) summable, where \(\{T_n^q\} \) is according to (9).

3.1.7 Nörlund Summability

(Hille, E. et al. 1932, Nörlund, N. 1919, Woroni, G. 1901)

Let \(\{p_n\} \) be a sequence of non-negative real numbers. A sequence-to-sequence transformation given by

\[
t_n = \frac{1}{p_n} \sum_{v=0}^{n} p_{n-v} s_v
\]

(10)

with \(p_0 > 0, p_n \geq 0 \), and \(P_n = p_0 + p_1 + p_2 + \cdots + p_n ; n \in N \)

defines the Nörlund mean of the series (4) generated by the sequence of constants \(\{p_n\} \). It is symbolically represented by \((N, p_n)\) mean.

The series (4) is said to be Nörlund summable or \((N, p_n)\) summable to the sum \(s \) if,

\[
\lim_{n \to \infty} t_n = s
\]

where, \(s \) is finite number.

The regularity of Nörlund method is presented by

\[
\lim_{n \to \infty} \frac{p_n}{P_n} = 0
\]

(11)

3.1.8 Absolute Nörlund Summability

(Mears, F. et al. 1937)

The series (4) is said to be absolutely Nörlund summable or \(|N,p_n|\) summable if
\[
\sum_{n=1}^{\infty} |t_n - t_{n-1}| < \infty,
\]
where \(\{t_n\}\) is according to (10).

3.1.9 \((\bar{N},p_n)\) Summability or Riesz Summability or \((R,p_n)\) Summability

(Hardy, G. 1949)

Let \(\{p_n\}\) be a sequence of non-negative real numbers. A sequence-to-sequence transformation given by

\[
\bar{t}_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v
\]

with \(p_0 > 0, p_n \geq 0\), and \(P_n = p_0 + p_1 + p_2 + \cdots p_n \); \(n \in N\)
define the \((\bar{N},p_n)\) mean of the series (4) generated by the sequence of constants \(\{p_n\}\).

The series (4) is said to be \((\bar{N},p_n)\) summable to the sum \(s\) if,

\[
\lim_{n \to \infty} \bar{t}_n = s
\]

where, \(s\) is finite number.

3.1.10 Absolute \((\bar{N},p_n)\) Summability

The series (4) is said to be absolutely \((\bar{N},p_n)\) summable or \(|\bar{N},p_n|\) summable if

\[
\sum_{n=1}^{\infty} |\bar{t}_n - \bar{t}_{n-1}| < \infty,
\]
where, \(\{\bar{t}_n\}\) is according to equation (12).

3.1.11 Generalized Nörlund Summability or \((N,p,q)\) Summability

(Borwin, D. et al. 1968)

Let \(\{p_n\}\) and \(\{q_n\}\) be sequences of non-negative real numbers with \(p_0 > 0, p_n \geq 0\), \(q_0 > 0, q_n \geq 0\) for all \(n \in N\) and \(P_n = p_0 + p_1 + p_2 + \cdots p_n\), \(Q_n = q_0 + q_1 + q_2 + \cdots q_n\); \(n \in N\).

A sequence-to-sequence transformation given by

\[
t_{n}^{p,q} = \frac{1}{R_n} \sum_{v=0}^{n} p_{n-v} q_v s_v
\]

where,
\[R_n = \sum_{v=0}^{n} p_{n-v} q_v \]

defines the \((N, p, q)\) mean of the series (4) generated by sequence of coefficients \(\{p_n\}\) and \(\{q_n\}\).

The series (4) is said to be generalized Nörlund summable or \((N, p, q)\) summable if

\[
\lim_{n \to \infty} t_{n,p,q} = s,
\]

where, \(s\) is a finite number and \(t_{n,p,q}\) is according to (13).

If we take \(p_n = 1\) for all \(n\), then \((N, p, q)\) summability reduces to \((R, q_n)\) or \((\bar{N}, q_n)\) summability.

If we take \(q_n = 1\) for all \(n\), then \((N, p, q)\) summability reduces to \((N, p_n)\) summability.

3.1.12 Absolute Generalized Nörlund Summability or Absolute \((N, p, q)\) Summability or \(|N, p, q|\) summability

The absolute generalized Nörlund Summability was introduced by Tanka, M. (1978).

Let \(\{p_n\}\) and \(\{q_n\}\) be sequences of non-negative real numbers with \(p_0 > 0\), \(p_n \geq 0\), \(q_0 > 0\), \(q_n \geq 0\) for all \(n \in N\) and \(P_n = p_0 + p_1 + p_2 + \cdots p_n\), \(Q_n = q_0 + q_1 + q_2 + \cdots q_n\); \(n \in N\).

A sequence-to-sequence transformation given by

\[
t_{n,p,q} = \frac{1}{R_n} \sum_{v=0}^{n} p_{n-v} q_v s_v
\]

where,

\[
R_n = \sum_{v=0}^{n} p_{n-v} q_v
\]

defines the \((N, p, q)\) mean of the series (4) generated by sequence of coefficients \(\{p_n\}\) and \(\{q_n\}\).

If

\[
\sum_{n=1}^{\infty} |t_{n,p,q} - t_{n-1,p,q}| < \infty
\]

then the series (4) is said to be absolutely generalized Nörlund summable or absolutely \((N, p, q)\) summable or \(|N, p, q|\) summable, where, \(t_{n,p,q}\) is according to (14).

3.1.13 \((\bar{N}, p, q)\) Summability

Let \(\{p_n\}\) and \(\{q_n\}\) be sequences of non-negative real numbers with \(p_0 > 0\), \(p_n \geq 0\), \(q_0 > 0\), \(q_n \geq 0\) for all \(n \in N\) and \(P_n = p_0 + p_1 + p_2 + \cdots p_n\), \(Q_n = q_0 + q_1 + q_2 + \cdots q_n\); \(n \in N\).

A sequence-to-sequence transformation given by
\[\tilde{t}_{n}^{p,q} = \frac{1}{\tilde{R}_n} \sum_{v=0}^{n} p_v q_v s_v \] \hspace{1cm} (15)

where,

\[\tilde{R}_n = \sum_{v=0}^{n} p_v q_v \]

defines the \((\tilde{N},p,q)\) mean of the series \((4)\) generated by sequence of coefficients \(\{p_n\}\) and \(\{q_n\}\).

The series \((4)\) is said to be \((\tilde{N},p,q)\) summable if

\[\lim_{n \to \infty} \tilde{t}_{n}^{p,q} = s \]

where, \(s\) is a finite number and \(\tilde{t}_{n}^{p,q}\) is according to \((15)\).

If we take \(p_n = 1\) for all \(n\), then \((\tilde{N},p,q)\) summability reduces to \((\tilde{N},q_n)\) summability.

If we take \(q_n = 1\) for all \(n\), then \((\tilde{N},p,q)\) summability reduces to \((\tilde{N},p_n)\) summability.

3.1.14 Absolute \((\tilde{N},p,q)\) Summability or \(|\tilde{N},p,q|\) Summability

Let \(\{p_n\}\) and \(\{q_n\}\) be sequences of non-negative real numbers with \(p_0 > 0\), \(p_n \geq 0\), \(q_0 > 0\), \(q_n \geq 0\) for all \(n \in \mathbb{N}\) and \(p_n = p_0 + p_1 + p_2 + \cdots p_n\). \(Q_n = q_0 + q_1 + q_2 + \cdots q_n; n \in \mathbb{N}\).

A sequence-to-sequence transformation given by

\[\tilde{t}_{n}^{p,q} = \frac{1}{\tilde{R}_n} \sum_{v=0}^{n} p_v q_v s_v \] \hspace{1cm} (16)

where,

\[\tilde{R}_n = \sum_{v=0}^{n} p_v q_v \]

defines the \((\tilde{N},p,q)\) mean of the series \((4)\) generated by sequence of coefficients \(\{p_n\}\) and \(\{q_n\}\).

If

\[\sum_{n=1}^{\infty} |\tilde{t}_{n}^{p,q} - \tilde{t}_{n-1}^{p,q}| < \infty \]

then the series \((4)\) is said to be absolutely \((\tilde{N},p,q)\) summable or \(|\tilde{N},p,q|\) summable, where, \(\tilde{t}_{n}^{p,q}\) is according to \((16)\).

3.1.15 Indexed Summability methods

3.1.15.1 \(|\mathbb{N},p_n|_k\) Summability

Let \(\{p_n\}\) be sequence of non-negative real numbers, with \(p_0 > 0, p_n \geq 0\)
\[P_n = p_0 + p_1 + \cdots + p_n \; ; \; n \in N \]

If \[
\sum_{n=1}^{\infty} n^{k-1} |t_n - t_{n-1}|^{k-1} < \infty
\]

where, \{\{t_n\}\} is according to (10), then the series (4) is said absolute Nörlund summable with index \(k \geq 1\) or \(|N, p_n|_k\).

If \(k = 1\), \(|N, p_n|_k\) summability reduces to \(|N, p_n|\).

3.1.15.2 \(|\bar{N}, p_n|_k\) Summability

Let \{\{p_n\}\} be sequence of non-negative real numbers, with \(p_0 > 0, p_n \geq 0\)

\[P_n = p_0 + p_1 + \cdots + p_n \; ; \; n \in N \]

If \[
\sum_{n=1}^{\infty} n^{k-1} |\bar{t}_n - \bar{t}_{n-1}|^{k-1} < \infty
\]

when \{\{\{\bar{t}_n\}\}\} is according to (12), then the series (4) is said to be absolutely \((\bar{N}, p_n)\) summable with index \(k \geq 1\) or \(|\bar{N}, p_n|_k\).

If \(k = 1\), then \(|\bar{N}, p_n|_k\) summability reduces to \(|\bar{N}, p_n|\).

3.1.15.3 \(|N, p_n, q_n|_k\) Summability

Let \{\{p_n\}\} and \{\{q_n\}\} be sequences of non-negative real numbers with \(p_0 > 0, p_n \geq 0, q_0 > 0, q_n \geq 0\) for all \(n \in N\) and \(P_n = p_0 + p_1 + p_2 + \cdots + p_n\). \(Q_n = q_0 + q_1 + q_2 + \cdots + q_n\; ; \; n \in N\).

A sequence-to-sequence transformation given by

\[
t_n^{p,q} = \frac{1}{R_n} \sum_{u=0}^{n} p_{n-u} q_u s_u
\]

(17)

where,

\[
R_n = \sum_{u=0}^{n} p_{n-u} q_u
\]

defines the \((N, p, q)\) mean of the series (4) generated by sequence of coefficients \{\{p_n\}\} and \{\{q_n\}\}.

If \[
\sum_{n=1}^{\infty} n^{k-1} |t_n^{p,q} - t_{n-1}^{p,q}|^k < \infty
\]
then the series (4) is summable to be $|N, p_n, q_n|_k$ for $k \geq 1$, where $\epsilon_n^{p,q}$ according to (17).

If we take $p_n = 1$ for all n, then $|N, p, q|_k$ summability reduces to $|R, q_n|_k$ or $|\bar{N}, q_n|_k$ summability.

If we take $q_n = 1$ for all n, then $|N, p, q|_k$ method reduces to $|N, p_n|_k$ summability.

3.1.15.4 $|\bar{N}, p_n, q_n|_k$ Summability

Let $\{p_n\}$ and $\{q_n\}$ be sequences of non-negative real numbers with $p_0 > 0$, $p_n \geq 0$, $q_0 > 0$, $q_n \geq 0$ for all $n \in N$ and $P_n = p_0 + p_1 + p_2 + \cdots + p_n$. $Q_n = q_0 + q_1 + q_2 + \cdots + q_n$; $n \in N$.

A sequence-to-sequence transformation given by

$$
\epsilon_n^{p,q} = \frac{1}{\bar{R}_n} \sum_{v=0}^{n} p_v q_v s_v
$$

where,

$$
\bar{R}_n = \sum_{v=0}^{n} p_v q_v
$$

defines the (\bar{N}, p, q) mean of the series (4) generated by sequence of coefficients $\{p_n\}$ and $\{q_n\}$.

If

$$
\sum_{n=1}^{\infty} n^{k-1} |\epsilon_n^{p,q} - \epsilon_{n-1}^{p,q}|^k < \infty
$$

then the infinite series (4) is said to be $|\bar{N}, p_n, q_n|_k$ for $k \geq 1$, where $\epsilon_n^{p,q}$ according to (18).

If we take $p_n = 1$ for all n, then $|\bar{N}, p, q|_k$ summability reduces to $|\bar{N}, q_n|_k$ summability.

If we take $q_n = 1$ for all n, then $|\bar{N}, p, q|_k$ summability reduces to $|\bar{N}, p_n|_k$ summability.

3.1.15.5 (N, p_n^α) Summability

We shall restrict ourselves to Nörlund method (N, p_n) for which $p_0 > 0$; $p_n \geq 0$.

Let,

$$
\epsilon_0^\alpha = 1, \quad \epsilon_n^\alpha = \binom{n + \alpha}{n};
$$

Give any sequence $\{v_n\}$ we use the following notation:

$$(i) \sum_{r=0}^{n} \epsilon_r^\alpha v_{n-r} = v_n^\alpha$$
(ii) $\Delta v_n = \frac{1}{v_n}$

The following identities are immediate:

$$\sum_{r=0}^{n} \varepsilon_{r}^{\beta-1} v_{n-r}^{\alpha} = v_{n}^{\alpha+\beta}$$

$$p_{n}^{\alpha} = p_{n}^{\alpha+1} = \sum_{r=0}^{n} p_{r}^{\alpha}.$$

Now, we shall consider (N, p_{n}^{α}) summability for $\alpha > -1$, and, when $p_n \neq 0$ all values of n, we shall allow for $\alpha = -1$.

When $p_0 = 1, p_n = 0$ for $n > o$; $p_{n}^{\alpha} = \varepsilon_{n}^{\alpha-1}$, so that (N, p_{n}^{α}) method is (c, α) mean.

We say that (4) is said to be (N, p_{n}^{α}) summable if

$$\lim_{n \to \infty} t_{n}^{\alpha} = s$$

where,

$$t_{n}^{\alpha} = \frac{1}{p_{n}^{\alpha}} \sum_{u=0}^{n} p_{n-u}^{\alpha} s_{u}$$

(19)

3.1.15.6 $|N, p_{n}^{\alpha}|$ Summability

We shall restrict ourselves to Nörlund method (N, p_{n}) for which $p_0 > 0 ; p_n \geq 0$.

Let,

$$\varepsilon_{0}^{\alpha} = 1, \quad \varepsilon_{n}^{\alpha} = \left(\frac{n + \alpha}{n}\right);$$

Give any sequence $\{v_{n}\}$ we use the following notation:

(i) $\sum_{r=0}^{n} \varepsilon_{r}^{\alpha-1} v_{n-r}^{\alpha} = v_{n}^{\alpha}$

(ii) $\Delta v_{n} = \frac{1}{v_{n}}$

The following identities are immediate:

$$\sum_{r=0}^{n} \varepsilon_{r}^{\beta-1} v_{n-r}^{\alpha} = v_{n}^{\alpha+\beta}$$

$$p_{n}^{\alpha} = p_{n}^{\alpha+1} = \sum_{r=0}^{n} p_{r}^{\alpha}.$$

Now, we shall consider (N, p_{n}^{α}) summability for $\alpha > -1$, and, when $p_n \neq 0$ all values of n, we shall allow for $\alpha = -1$.

When $p_0 = 1, p_n = 0$ for $n > o$; $p_{n}^{\alpha} = \varepsilon_{n}^{\alpha-1}$ so that (N, p_{n}^{α}) method is (c, α) mean.

We say that (4) is said to be absolutely (N, p_{n}^{α}) or $|N, p_{n}^{\alpha}|$ summable if
\[\sum_{n=1}^{\infty} |t_n^\alpha - t_{n-1}^\alpha| < \infty \]

where, \(\{t_n^\alpha\} \) is according to (19).

3.1.15.7 \((N, p_n^\alpha, q_n^\alpha)\) Summability

We shall restrict ourselves to Nörlund method \((N, p_n, q_n)\) for which \(p_0 > 0\); \(p_n \geq 0\), \(q_0 > 0\); \(q_n \geq 0\)

Let,

\[\varepsilon_0^\alpha = 1, \quad \varepsilon_n^\alpha = \left(\frac{n + \alpha}{n}\right); \]

Give any sequence \(\{v_n\}\) we use the following notation:

(i) \(\sum_{r=0}^{n} \varepsilon_r^{\alpha-1} v_{n-r} = v_n^\alpha\)

(ii) \(\Delta v_n = \frac{1}{v_n}\)

The following identities are immediate:

\[\sum_{r=0}^{n} \varepsilon_r^{\beta-1} v_{n-r} = v_{n+\beta}^\alpha \]

\[p_n^\alpha = p_{n+1}^\alpha = \sum_{r=0}^{n} p_r^\alpha. \]

\[Q_n^\alpha = q_{n+1}^\alpha = \sum_{r=0}^{n} q_r^\alpha. \]

Now, we shall consider \((N, p_n^\alpha, q_n^\alpha)\) summability for \(\alpha > -1\), and, when \(p_n \neq 0\) all values of \(n\), we shall allow for \(\alpha = -1\)

We say that (4) is \((N, p_n^\alpha, q_n^\alpha)\) summable if \(t_n^{p_n^\alpha q_n^\alpha} \rightarrow s\) as \(n \rightarrow \infty\)

\[t_n^{p_n^\alpha q_n^\alpha} = \frac{1}{R_n^\alpha} \sum_{r=0}^{n} p_{n-r}^\alpha q_r^\alpha s_r \quad (20) \]

where,

\[R_n^\alpha = \sum_{r=0}^{n} p_{n-r}^\alpha q_r^\alpha \]

3.1.15.8 Absolute \((N, p_n^\alpha, q_n^\alpha)\) Summability

We shall restrict ourselves to Nörlund method \((N, p_n, q_n)\) for which \(p_0 > 0\); \(p_n \geq 0\), \(q_0 > 0\); \(q_n \geq 0\)

Let,

\[\varepsilon_0^\alpha = 1, \quad \varepsilon_n^\alpha = \left(\frac{n + \alpha}{n}\right); \]

Give any sequence \(\{v_n\}\) we use the following notation:
\[(i) \sum_{r=0}^{n} \epsilon_r^{\alpha-1} v_{n-r} = v_n^\alpha\]

\[(ii) \Delta v_n = \frac{1}{v_n}\]

The following identities are immediate:

\[\sum_{r=0}^{n} \epsilon_r^{\beta-1} v_{n-r} = v_n^{\alpha+\beta}\]

\[p_n^{\alpha} = p_{n+1}^{\alpha+1} = \sum_{r=0}^{n} p_r^{\alpha}\]

\[Q_n^{\alpha} = q_{n+1}^{\alpha+1} = \sum_{r=0}^{n} q_r^{\alpha}\]

Now, we shall consider \((N, p_n^{\alpha}, q_n^{\alpha})\) summability for \(\alpha > -1\), and, when \(p_n \neq 0, q_n \neq 0\) all values of \(n\), we shall allow for \(\alpha = -1\)

We say that (4) is summable \(|N, p_n^{\alpha}, q_n^{\alpha}|\) if

\[\sum_{n=1}^{\infty} \left| t_n p_n^{\alpha} q_n^{\alpha} - t_{n-1} p_{n-1}^{\alpha} q_{n-1}^{\alpha} \right| < \infty\]

where

\[t_n p_n^{\alpha} q_n^{\alpha} = \frac{1}{R_n^{\alpha}} \sum_{r=0}^{n} p_{n-r}^{\alpha} q_r^{\alpha} s_r\]

\[R_n^{\alpha} = \sum_{r=0}^{n} p_{n-r}^{\alpha} q_r^{\alpha}\]

3.1.15.9 \(|A|_k; k \geq 1\) Summability

Let \(A = (A_{nv})\) be a normal matrix. i.e. lower triangular matrix of non zero diagonal entries. Then \(A\) defines the sequence-to-sequence transformation, mapping to a sequence \(s = \{s_n\}\) to \(As = \{A_n(s)\}\) where

\[A_n(s) = \sum_{v=0}^{n} A_{nv}s_v; n = 0,1,2, \ldots (21)\]

The series (4) is said to be summable \(|A|_k ; k \geq 1\) if

\[\sum_{n=1}^{\infty} n^{k-1} |\Delta A_n(s)|^k < \infty\]

\[\Delta A_n(s) = A_n(s) - A_{n-1}(s)\]

3.1.15.10 \(|A; \delta|_k, k \geq 1, \delta \geq 0\) Summability

We say that series (4) is \(|A; \delta|_k\), summable, where \(k \geq 1, \delta \geq 0\), if
\[
\sum_{n=1}^{\infty} n^{\delta k+k-1} |\Delta A_n(s)|^k < \infty
\]

3.1.15.11 $\Phi - |A; \delta|_k$, $k \geq 1$ Summability

Let \(\{\Phi_n\} \) be a sequence of positive real numbers. We say that series (4) is $\Phi - |A, \delta|_k$ summable, where $k \geq 1, \delta \geq 0$, if

\[
\sum_{n=1}^{\infty} \Phi_n^{\delta k+k-1} |\Delta A_n(s)|^k < \infty
\]

3.1.15.12 The product summability: $|(N, p_n, q_n)(N, q_n, p_n)|_k$, $k \geq 1,$

Let \(\{p_n\} \) and \(\{q_n\} \) be two sequences of real numbers and let

\[
P_n = p_0 + p_1 + \cdots + p_n = \sum_{v=0}^{n} p_v
\]

\[
Q_n = q_0 + q_1 + \cdots + q_n = \sum_{v=0}^{n} q_v
\]

Let \(p \) and \(q \) represent two sequences \(\{p_n\} \) and \(\{q_n\} \) respectively. The convolution between \(p \) and \(q \) is denoted by \((p \ast q)_n\) and is defined by

\[
R_n := (p \ast q)_n = \sum_{v=0}^{n} p_{n-v}q_v = \sum_{v=0}^{n} p_vq_{n-v}
\]

Define

\[
R_n^j := \sum_{v=j}^{n} p_{n-v}q_v
\]

The generalized Nörlund mean of series (4) is defined as follows and is denoted by $t_n^{p,q}(x)$.

\[
t_n^{p,q} = \frac{1}{R_n} \sum_{v=0}^{n} p_{n-v}q_v s_v(x)
\]

(22)

where, \(R_n \neq 0 \) for all \(n \).

The series (4) is said to be absolutely summable \((N, p, q)\) i.e.|$N, p, q| \) summable, if the series

\[
\sum_{n=1}^{\infty} |t_n^{p,q} - t_{n-1}^{p,q}| < \infty
\]

If we take \(p_n = 1 \) for all \(n \) then, the sequence-to-sequence transformation \(t_n^{p,q} \) reduces to \((\bar{N}, q_n)\) transformation

\[
\bar{t}_n := \frac{1}{Q_n} \sum_{v=0}^{n} q_v s_v
\]
If we take $q_n = 1$ for all n then, the sequence- to- sequence transformation $t_n^{p,q}$ reduces to (\bar{N}, p_n) transformation

$$t_n = \frac{1}{P_n} \sum_{v=0}^{n} p_v s_v$$

(See Krasniqi, Xh. Z. 2013(2))

Das, G. 1969 defined the following transformation

$$U_n := \frac{1}{P_n} \sum_{v=0}^{n} p_{n-v} \sum_{j=0}^{v} q_{v-j} s_j$$

(23)

The infinite series (4) is said to be summable $|(N, p)(N, q)|$, if the series

$$\sum_{n=1}^{\infty} |U_n - U_{n-1}| < \infty$$

Later on, Sulaiman, W. 2008 considered the following transformation:

$$V_n := \frac{1}{Q_n} \sum_{v=0}^{n} q_v \sum_{j=0}^{v} p_{j} s_j$$

(24)

The infinite series (4) is said to be summable $|\bar{N}, q_n)(\bar{N}, p_n)|$, $k \geq 1$, if

$$\sum_{n=1}^{\infty} n^{k-1}|V_n - V_{n-1}|^k < \infty$$

Krasniqi, Xh. Z. 2013(2) have defined the transformation which is as follows:

$$D_n := \frac{1}{R_n} \sum_{v=0}^{n} \frac{p_{n-v} q_v}{R_v} \sum_{j=0}^{v} p_{j} q_{v-j} s_j$$

(25)

The infinite series (4) is said to be $|(\bar{N}, p_n q_n)(\bar{N}, q_n p_n)|$, $k \geq 1$, if

$$\sum_{n=1}^{\infty} n^{k-1}|D_n - D_{n-1}|^k < \infty$$

We have defined the transformation as follows:

$$E_n := \frac{1}{R_n} \sum_{v=0}^{n} \frac{p_v q_v}{R_v} \sum_{j=0}^{v} p_{j} q_{j} s_j,$$

(26)

3.1.15.13 The product summability $|\bar{N}, p_n q_n)(\bar{N}, q_n p_n)|$, $k \geq 1$

The infinite series (4) is said to be summable $|\bar{N}, p_n q_n)(\bar{N}, q_n p_n)|$, $k \geq 1$, if

$$\sum_{n=1}^{\infty} n^{k-1}|E_n - E_{n-1}|^k < \infty$$

3.1.16 Lambert Summability

The series (4) is said to be Lambert summable to s
\[\lim_{x \to 1^-} (1 - x) \sum_{n=1}^{\infty} \frac{n u_n x^n}{1 - x^n} = s \]

3.1.17 Generalized Lambert Summability

The series (4) is said to be generalized Lambert summable to \(s \) if

\[\lim_{x \to 1^-} u_n \left(\frac{n(1 - x)}{1 - x^n} \right)^\alpha x^n = s \]

4.0 Absolute Summability of Double Orthogonal Series:

Consider

\[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{mn} \]

be a given double infinite series. Suppose \(\{s_{mn}\} \) be a sequence of partial sums of the series (27). Suppose the sequence \(\{p_n\} \) and \(\{q_n\} \) are denoted by \(p \) and \(q \) respectively. Then the convolution of \(p \) and \(q \) denoted by \((p \ast q)_n \) and defined as follows:

\[R_{mn} := (p \ast q)_n = \sum_{i=0}^{m} \sum_{j=0}^{n} p_{m-i,n-j} q_{ij} = \sum_{i=0}^{m} \sum_{j=0}^{n} p_{i,j} q_{m-i,n-j} \]

The following notations where used by Krasniqi, Xh. Z. 2011(2) while estimating the Norlund summability of double orthogonal series:

\[R_{mn}^{\nu \mu} = \sum_{i=\nu}^{m} \sum_{j=\mu}^{n} p_{m-i,n-j} q_{ij}; \]

\[R_{mn}^{00} = R_{mn}; \]

\[R_{m,n-1}^{\nu \mu} = \sum_{i=\nu}^{m} \sum_{j=\mu}^{n} p_{m-i,n-j} q_{ij}; \]

\[R_{m,n}^{\mu \nu} = \sum_{i=\nu}^{m} \sum_{j=\mu}^{n} p_{m-i,n-j} q_{ij}; \]

\[R_{m,n}^{\mu \nu} = \sum_{i=\nu}^{m} \sum_{j=\mu}^{n} p_{m-i,n-j} q_{ij}; \]

\[\bar{\Lambda}_{11} \left(\frac{R_{mn}^{\nu \mu}}{R_{mn}} \right) = \frac{R_{mn}^{\nu \mu}}{R_{m,n}} - \frac{R_{m-1,n}^{\nu \mu}}{R_{m-1,n}} - \frac{R_{m,n-1}^{\nu \mu}}{R_{m,n-1}} + \frac{R_{m-1,n-1}^{\nu \mu}}{R_{m-1,n-1}} \]

The generalized \((N, p_n, q_n) \) transform of the sequence \(\{s_{mn}\} \) is \(t_{mn}^{pq} \) and is defined by
\[t_{mn}^{pq} = \frac{1}{R_{mn}} \sum_{i=0}^{m} \sum_{j=0}^{n} p_{m-i,n-j} q_{ij} s_{ij} \]

(28)

We define the following

\[\bar{R}_{mn} := \sum_{i=0}^{m} \sum_{j=0}^{n} p_{ij} q_{ij} ; \]

We use the following notations:

\[R_{mn}^{\nu\mu} = \sum_{i=\nu}^{m} \sum_{j=\mu}^{n} p_{ij} q_{ij} ; \]

\[\bar{R}_{mn}^{00} = \bar{R}_{mn} ; \]

\[R_{mn}^{m,n-1} = \bar{R}_{m-1,n}^{0v} = 0 ; 0 \leq v \leq m ; \]

\[R_{mn}^{m\mu} = \bar{R}_{m,n-1}^{0\mu} = 0 ; 0 \leq \mu \leq n ; \]

\[\Delta_{11} \left(\frac{R_{mn}^{\nu\mu}}{R_{mn}} \right) = \frac{R_{mn}^{\nu\mu}}{R_{mn}} - \frac{R_{m-1,n}^{\nu\mu}}{R_{m-1,n}} - \frac{R_{m,n-1}^{\nu\mu}}{R_{m,n-1}} + \frac{R_{m-1,n-1}^{\nu\mu}}{R_{m-1,n-1}} \]

The generalized \((N, p_n, q_n)\) transform of the sequence \(s_{mn}\) is \(\tilde{t}_{mn}^{pq}\) and is defined by

\[\tilde{t}_{mn}^{pq} = \frac{1}{R_{mn}} \sum_{i=0}^{m} \sum_{j=0}^{n} p_{i,j} q_{ij} s_{ij} \]

(29)

4.0.1 \(|N^{(2)}, p, q|_k\) for \(k \geq 1\) Summability

The series (27) is \(|N^{(2)}, p, q|_k\) for \(k \geq 1\), if the series

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |t_{mn}^{pq} - t_{m-1,n}^{pq} - t_{m,n-1}^{pq} + t_{m-1,n-1}^{pq}|^k < \infty \]

with the condition

\[t_{m-1,n}^{pq} = t_{m,n-1}^{pq} = t_{m-1,n-1}^{pq} = 0, \quad m, n = 0, 1, ... \]

4.0.2 \(|N^{(2)}, p, q|_k\) for \(k \geq 1\) Summability

The series (27) is \(|N^{(2)}, p, q|_k\) for \(k \geq 1\), if the series

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} |\tilde{t}_{mn}^{pq} - \tilde{t}_{m-1,n}^{pq} - \tilde{t}_{m,n-1}^{pq} + \tilde{t}_{m-1,n-1}^{pq}|^k < \infty \]

with the condition
\[\ell_{m,-1}^{p,q} = \ell_{-1,n}^{p,q} = \ell_{-1,-1}^{p,q} = 0, \quad m,n = 0,1, \ldots \]

5.0 History related to Convergence of an Orthogonal Series:

The thesis focuses on convergence and summability of general orthogonal series

\[\sum_{n=0}^{\infty} c_n \varphi_n (x) \] \hspace{1cm} (30)

where, \(\{c_n\} \) is any arbitrary sequence of real numbers. It can be seen that

\[\sum_{n=0}^{\infty} |c_n| < \infty \] \hspace{1cm} (31)

implies the absolute convergence of series (30) almost everywhere in the interval of orthogonality. On the other hand, it has been shown through example of a series of Rademacher functions that the condition.

\[\sum_{n=0}^{\infty} c_n^2 < \infty \] \hspace{1cm} (32)

is necessary condition for the convergence of series (30) almost everywhere in the interval of orthogonality. It is reasonable to say that the useful condition for the convergence of series (30) lies between (31) and (32).

The question of convergence of orthogonal series was originally started by Jerosch, F. et al. 1909, Weyl, H. 1909 who pointed out that the condition:

\[c_n = O \left(n^{-\frac{3}{4} - \epsilon} \right), \; \epsilon > 0 \]

is sufficient for the convergence of series (30).

Further, Weyl, H. 1909, has improved the condition by showing that the condition

\[\sum_{n=1}^{\infty} c_n^2 \sqrt{n} < \infty \]

is sufficient for convergence of series (20). Later on Hobson, E. 1913, modified the Weyl's condition which is of the form

\[\sum_{n=1}^{\infty} c_n^2 n^\epsilon < \infty; \; \epsilon > 0 \]

and Plancherel, N. 1910 has also modified the condition
\[\sum_{n=2}^{\infty} c_n^2 \log^3 n < \infty. \]

In this direction, many attempts have been made to improve the condition of convergence of series (30). Finally, important contribution put forwarded by Rademacher, H. 1922 and by Menchoff, D. 1923, simultaneously and independently of one another for convergence of an orthogonal series (30). They have shown that the series (30) is convergent almost everywhere in the interval of orthogonality, if

\[\sum_{n=1}^{\infty} c_n^2 \log^2 n < \infty \]

is satisfied.

The theorem of Rademacher, H. and Manchoff, D. is the best of its kind which is obvious from the below theorem of convergence theory given by Manchoff, D..

If \(w(n) \) is an arbitrary positive monotone increasing sequence of numbers with \(w(n) = o(\log |n|) \), then there exist an everywhere divergent orthogonal series,

\[\sum_{n=0}^{\infty} c_n \psi_n(x) \]

whose coefficients satisfy the condition

\[\sum_{n=1}^{\infty} c_n^2 w_n^2 < \infty \]

Tandori, K. 1975 proved that if \(\{c_n\} \) is positive monotone decreasing sequence of number for which,

\[\sum_{n=1}^{\infty} c_n^2 \log^2 n = \infty \]

holds true then there exist in (a,b) an orthonormal system, \(\{\psi_n(x)\} \) dependent on \(c_n \) such that the orthogonal series

\[\sum_{n=0}^{\infty} c_n \psi_n(x) \]

is convergent almost everywhere.

6.0 Summability of Orthogonal Series:

It was first shown by Kaczmarz, S. 1925 that under the condition
\[\sum_{n=0}^{\infty} c_n^2 < \infty \]

the necessary and sufficient condition for general orthogonal series \((30)\) to be \((C,1)\) summable almost everywhere is that there exist a sequence of partial sums

\[\{S_n(x)\} : 1 \leq q \leq \frac{y_{n+1}}{y_n} \leq r \] convergent everywhere in the interval of orthogonality. The same result was extended by Zygmund, A. 1927, Zygmund, A. 1959, for \((C,\alpha), \alpha > 0\) summability.

The classical result of H. Weyl, H. 1909 for \((C,1)\) summability reads as follows; The condition

\[\sum_{n=2}^{\infty} c_n^2 \log n < \infty \]

is sufficient for \((C,1)\) summability of \((30)\).

Again Borgen, S. 1928, Kaczmarz, S. 1927, Menchoff, D. 1925, and Menchoff, D. 1926, have refined the same condition and established an analogous of Rademacher-Menchoff theorem for \((C,\alpha)\), summability; which shows that

\[\sum_{n=3}^{\infty} c_n^2 (\log(\log n))^2 < \infty \]

implies \((C, \alpha > 0)\) summability of series \((30)\).

7.0 Description of Work:

The present thesis contains eight chapters. Now we shall give chapterwise description. Chapter I is an introduction of complete thesis.

It involves history related to the origin of orthogonal series, some fundamentals and definitions like Banach summability, absolute Banach summability, Cesàro summability, absolute Cesàro summability, Euler summability, Lambert summability, generalized Lambert summability, Nörlund summability, absolute Nörlund summability, \((\bar{N}, p_n)\) summability, absolute \((\bar{N}, p_n)\) summability, \((N, p, q)\) summability, \(|N, p, q|\) summability, \((\bar{N}, p, q)\) summability, \(|\bar{N}, p, q|\) summability, \(|N, p, q|_k\) summability, \(|\bar{N}, p, q|_k\) summability, \(|N, p, q|_k\) summability, \(|\bar{N}, p, q|_k\) summability, \(k \geq 1\), \((N, p_n^G)\) summability, \(|N, p_n^G|\) summability, \((N, p_n^G, q_n^G)\) summability, \(|N, p_n^G, q_n^G|\) summability, \(|\bar{N}, p_n^G, q_n^G|\) summability, \(|\bar{N}, p_n^G, q_n^G|\) summability, \(\alpha > -1\), matrix summability, \(|A|_k; k \geq 1\) summability, where \(A = (A_{nv})\) be a normal matrix, generalized matrix summability, \(|(N, p_n, q_n), (N, q_n, p_n)|_k\) summability

\[21 \]
for \(k \geq 1 \), and \(((\bar{N}, p_n, q_n), (\bar{N}, q_n, p_n))_k\) summability for \(k \geq 1 \). All these summabilities are related to single infinite series.

It also covers definitions of \(|N^{(2)}, p, q|_k \) summability for \(k \geq 1 \) and \(|\bar{N}^{(2)}, p, q|_k \) summability for \(k \geq 1 \) of double infinite series.

7.1 Absolute Summability of Orthogonal Series: Banach and Generalized Nörlund Summability:

Paikray, S. et al. 2012 have proved the following theorem:

Theorem 7.1

Let

\[
\Psi_\alpha(+0) = 0, \quad 0 < \alpha < 1
\]

and

\[
\int_0^\pi \frac{d\Psi_\alpha(u)}{u^\alpha \log(n + U)} < \infty
\]

then, the series

\[
\sum_{n=1}^{\infty} \frac{B_n(t)}{\log(n + 1)}
\]

is \(|B|\) summable at \(t = x \), if

\[
\sum_{k \leq U} \log(n + U)k^{\alpha - 1} = O(U^\alpha \log(n + 2)) \quad ; U = \left[\frac{1}{u} \right]
\]

Tsuchikura, T. et al. 1953, have proved the following theorem on Cesàro summability of order \(\alpha \) for orthogonal series.

Theorem 7.2

Let \(\{\varphi_n(x)\} \) be orthonormal system defined in the interval \((a, b)\) and let \(\alpha > 0 \). If the series

\[
\sum_{n=1}^{\infty} \frac{1}{n^{1+\alpha}} \left(\sum_{k=1}^{n} k^2(n - k + 1)^{2(\alpha - 1)} a_k^2 \right)^{\frac{1}{2}} + \sum_{n=1}^{\infty} \frac{|a_n|}{n^\alpha}
\]
converges, then the orthogonal series
\[\sum_{n=1}^{\infty} a_n \varphi_n(x) \]
is summable \(|C, \alpha|\) for almost every \(x\).

In Chapter-II, we have extended the Theorem 7.2 of Tsuchikura, T. 1953 for the Banach summability. Our theorem is as follows:

Theorem 7A
Let \(\{\varphi_n(x)\}\) be an orthonormal system defined in \((a, b)\).
If
\[\sum_{k=1}^{\infty} \frac{1}{k+1} \left(\sum_{v=1}^{k} c_{n+v}^2 \right)^{\frac{1}{2}} < \infty \]
for all \(n\), then orthogonal series (7) is absolutely Banach summable i.e. \(|B|\) summable for every \(x\).

Tiwari, S. et al. 2011, obtained the following result on strong Nörlund summability of orthogonal series.

Theorem 7.3
If the series
\[\sum_{n=1}^{\infty} \left\{ \sum_{j=1}^{n} \left(\frac{R_n^j}{R_n} - \frac{R_n^{j-1}}{R_n} \right)^2 |a_j|^2 \right\}^{\frac{1}{2}} \]
converges, then the orthogonal series (2) is summable \(|N, p_n, q_n|\) almost everywhere.

In chapter-II, we have generalized the Theorem 7.3 for \(|N, p_n^\alpha, q_n^\alpha|, \alpha > -1\) summability of an orthogonal series.
Our result is as follows:

Theorem 7B
If the series
\[\sum_{n=1}^{\infty} \left\{ \sum_{v=1}^{n} \left(\frac{R_n^{\alpha v}}{R_n^\alpha} - \frac{R_n^{\alpha v-1}}{R_n^{\alpha -1}} \right)^2 |c_v|^2 \right\}^{\frac{1}{2}} \]
converges, then the orthogonal expansion
\[\sum_{v=0}^{\infty} c_v \varphi_v(x) \]
is summable \(|N, p_n^\alpha, q_n^\alpha|, \alpha > -1\) almost everywhere.
Krasniqi, Xh. Z. 2010 have discussed some general theorem on the absolute indexed generalized \(|N, p, q|_k, k \geq 1\) of
\[\sum_{n=0}^{\infty} a_n \varphi_n(x) \]

The theorem is as follows:

Theorem 7.4

If, for \(1 \leq k \leq 2\), the series

\[\sum_{n=0}^{\infty} \left(n^{2-2/k} \sum_{j=1}^{n} \left(\frac{R^j_n}{R_n} - \frac{R^j_{n-1}}{R_{n-1}} \right)^2 \right)^{k} \left| c_j \right|^2 \]

converges, then the orthogonal series

\[\sum_{n=0}^{\infty} c_n \varphi_n(x) \]

is summable \(|N, p, q|_k, k \geq 1\) almost everywhere.

In chapter III, we have extended the Theorem 7.4 to \(|\bar{N}, p, q|_k, k \geq 1\) summability of series (1), which as follows:

Theorem 7C

Let \(1 \leq k \leq 2\) and If the series

\[\sum_{n=0}^{\infty} \left(n^{2-2/k} \sum_{j=1}^{n} \left(\frac{R^j_n}{R_n} - \frac{R^j_{n-1}}{R_{n-1}} \right)^2 \right)^{k} \left| c_j \right|^2 < \infty \]

then, the orthogonal series

\[\sum_{n=0}^{\infty} c_n \varphi_n(x) \]

is \(|\bar{N}, p, q|_k, k \geq 1\) summable almost everywhere.

Chapter III also contains five important corollaries:

Corollary A says that for \(k = 1\), our Theorem 7C reduces to \(|\bar{N}, p, q|\) summability of (1)

Corollary B says that for \(q_n = 1\), our Theorem 7C reduces to \(|\bar{N}, p_n|_k\) summability of (1)

Corollary C says that for \(p_n = 1\), our Theorem 7C reduces to \(|\bar{N}, q_n|_k\) summability of (1)

Corollary D says that for \(k = 1\), in Corollary B reduces to \(|\bar{N}, p_n|\) summability of (1)

Corollary E say that for \(k = 1\), in Corollary C reduces to \(|\bar{N}, q_n|\) summability of (1)

7.2 Matrix Summability of an Orthogonal Series:

Based on definition of Flett, T. et al. 1957, Krasniqi, Xh. Z. et. al. 2012 has proved the following theorems:

Theorem 7.5

If the series
\[
\sum_{n=1}^{\infty} \left\{ n^{2-2\delta-2\kappa} \left(\sum_{j=0}^{n} |\hat{a}_{n,j}|^2 \right)^{k/2} \right\}
\]

converge for \(1 \leq k \leq 2\), then the orthogonal series

\[
\sum_{n=0}^{\infty} c_n \varphi_n(x)
\]

is \(|A|_k\) summable almost everywhere.

Theorem 7.6

Let \(1 \leq k \leq 2\) and \(\{\Omega(n)\}\) be a positive sequence such that \(\{\Omega(n)/n\}\) is non-increasing sequence and the series

\[
\sum_{n=1}^{\infty} \frac{1}{n \Omega(n)}
\]

converge. If the following series

\[
\sum_{n=1}^{\infty} |c_n|^2 \Omega_{k-1}(n) \omega^{(k)}(A; n)
\]

converges, then the orthogonal series

\[
\sum_{n=1}^{\infty} c_n \varphi_n(x) \in |A|_k
\]

almost everywhere.

In chapter IV, we have extended the two theorems of Krasniqi, Xh. Z. et. al. 2012, which are as follows:

Theorem 7D

If the series

\[
\sum_{n=1}^{\infty} \left\{ \Phi_n^{2\delta+2-2\kappa} \sum_{j=0}^{n} |\hat{a}_{n,j}|^2 |c_j|^2 \right\}^{k/2}
\]

converges for \(1 \leq k \leq 2\), then orthogonal series

\[
\sum_{n=0}^{\infty} c_n \varphi_n(x)
\]

is \(\Phi - |A: \delta|_k\) summable almost everywhere.

Theorem 7E

\(1 \leq k \leq 2\) and \(\{\Omega(n)\}\) be a positive sequence such that \(\{\Omega(n)/\Phi_n\}\) is non-increasing sequence and the series

\[
\sum_{n=1}^{\infty} \frac{1}{\Phi_n \Omega(n)}
\]

converges.

If
\[
\sum_{n=1}^{\infty} |c_n|^2 (\Omega(n))^{k-1} \omega^{(k)}(A, \delta ; \Phi_n))
\]

converges, then the orthogonal series
\[
\sum_{n=1}^{\infty} c_n \varphi_n(x)
\]
is \(\Phi - |A ; \delta|_k\) summable almost everywhere, where \(\omega^{(k)}(A, \delta ; \Phi_n)\) is
\[
\omega^{(k)}(A, \delta ; \Phi_n) := \frac{1}{2} \sum_{n=1}^{\infty} [\Phi_n]^{2(k+\frac{1}{k})} |\hat{a}_{n,j}|^2
\]

7.3 Approximation by Nörlund Means of an Orthogonal Series
Mőricz, F. et. al. 1992 have studied the rate of approximation by Nörlund means for Walsh-Fourier series. He has proved the following theorem:

Theorem 7.7

Let \(f \in L^p, 1 \leq p \leq \infty\), let \(n = 2^m + k, 1 \leq k \leq 2^m, m \geq 1\) and let \(\{q_k ; k \geq 0\}\) be a sequence of non-negative numbers such that
\[
\frac{n^{\gamma-1}}{Q_n^\gamma} \sum_{k=0}^{n-1} q_k^{\gamma} = O(1)
\]
for some \(1 < \gamma \leq 2\).

If \(\{q_k\}\) is non-decreasing, then
\[
||t_n(f) - f||_p \leq \frac{5}{2Q_n} \sum_{j=0}^{m-1} 2^j q_{n-2^j} \omega_p(f, 2^{-j}) + O\{\omega_p(f, 2^{-m})\}
\]
if \(\{q_k\}\) is non-increasing then
\[
||t_n(f) - f||_p \leq \frac{5}{2Q_n} \sum_{j=0}^{m-1} (Q_{n-2^j+1} - Q_{n-2^{j+1}+1}) \omega_p(f, 2^{-j}) + O\{\omega_p(f, 2^{-m})\}
\]

Moricz, F. et al. 1996 proved the following theorem:

Theorem 7.8

Let \(f \in L^p, 1 \leq p \leq \infty\), let \(n := 2^m + k, 1 \leq k \leq 2^m, m \geq 1\) and let \(\{q_k ; k \geq 0\}\) be a sequence of non-negative numbers.

If \(\{p_k\}\) is non-decreasing and satisfies the conditions
\[
\frac{np_n}{p_n} = O(1)
\]
then
\[||\bar{\tau}_n(f) - f||_p \leq \frac{3}{p^n} \sum_{j=0}^{m-1} 2^j p_{2j+1-1} \omega_p(f, 2^{-j}) + O(\omega_p(f, 2^{-m})) \]

if \(\{p_k\} \) is non-increasing then

\[||\bar{\tau}_n(f) - f||_p \leq \frac{3}{p^n} \sum_{j=0}^{m-1} 2^j p_{2j} \omega_p(f, 2^{-j}) + O(\omega_p(f, 2^{-m})) \]

In chapter V, we have generalized the result of Moricz, F. et al. 1992 and Moricz, F. et al. 1996 for \((E, 1)\) summability. Our result is as follows:

Theorem 7F

Let \(f \in L^p, 1 \leq p \leq \infty \), let \(n := 2^m + k, 1 \leq k \leq 2^m, m \geq 1 \), then

\[||T_n(f) - f||_p \leq \frac{3}{p^n} \sum_{j=0}^{m-1} 2^j \left(\frac{n}{2^{j+1} - 1} \right) \omega_p(f, 2^{-j}) + O(\omega_p(f, 2^{-m})) \]

7.4 Absolute Generalized Nörlund Summability of Double Orthogonal Series

Krasniqi, Xh. Z 2011(2) have proved the theorem on absolute generalized Nörlund summability of double orthogonal series. Some of the important contribution for absolute summability of an orthogonal series are due to Fedulov, V. 1955, Mitchell, J. 1949, Patel, C.M. 1967 and Sapre, A. 1971.

Okuyama, Y. 2002 have developed the necessary and sufficient condition in which the double orthogonal series is \(|N, p, q|\) summable almost everywhere.

Theorem 7.9

If the series

\[\sum_{n=0}^{\infty} \left(\sum_{j=1}^{n} \left(\frac{R_{ij}^{n}}{R_n} - \frac{R_{i-1}^{j}}{R_{n-1}} \right)^2 \right)^{\frac{1}{2}} \]

converges then the orthogonal series

\[\sum_{n=0}^{\infty} c_n \varphi_n(x) \]

is summable \(|N, p, q|\) almost everywhere.

Krasniqi, Xh. Z. 2011(2) have proved the following theorem for absolute Nörlund summability with index for double orthogonal expansion.

Theorem 7.10

If

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} \left(\sum_{v=1}^{m} \left[\frac{A_{11}}{R_{mn}} \right]^2 \right)^{\frac{k}{2}} \]

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} \left\{ \sum_{\mu=1}^{n} \left[\bar{\Delta}_{11} \left(\frac{R_{0\mu}}{R_{mn}} \right) \right]^2 \right\}^{k/2} \]

and

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} \left\{ \sum_{\mu=1}^{m} \sum_{\nu=1}^{n} \left[\Delta_{11} \left(\frac{R_{\nu\mu}}{R_{mn}} \right) \right]^2 \right\}^{k/2} \]

converges for \(1 \leq k \leq 2 \), then the orthogonal series

\[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{mn} \varphi_{mn}(x) \]

is \(|N^{(2)}, p, q|_k \) summable almost everywhere.

In Chapter VI, we have extended the theorem of Krasniqi Xh. Z. 2011 for \(|\bar{N}^{(2)}, p, q|_k \) for \(k \geq 1 \) which is as follows:

Theorem 7G

If

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} \left\{ \sum_{\nu=1}^{m} \left[\Delta_{11} \left(\frac{R_{\nu\mu}}{R_{mn}} \right) \right]^2 \right\}^{k/2} \]

and

\[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} (mn)^{k-1} \left\{ \sum_{\mu=1}^{n} \left[\Delta_{11} \left(\frac{R_{0\mu}}{R_{mn}} \right) \right]^2 \right\}^{k/2} \]

converges for \(1 \leq k \leq 2 \), then the orthogonal series

\[\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{mn} \varphi_{mn}(x) \]

is \(|\bar{N}^{(2)}, p, q|_k \) summable almost everywhere.

7.5 General Lambert Summability of Orthogonal Series

Let \(\{ \varphi_n(\theta) \} \), \(n = 0, 1, ... \) be an orthonormal system defined in \((a, b)\). Let

\[\sum_{n=0}^{\infty} c_n \varphi_n(\theta) \]

be an orthogonal series, where \(\{c_n\} \) be a sequence of real numbers.

Let \(f(\theta) \in L^2(a, b) \); then
\[f \sim \sum_{n=0}^{\infty} c_n \varphi_n (\theta) \]

be an orthogonal expansion of \(f(\theta) \), where

\[c_n = \int_{a}^{b} f(\theta) \varphi_n(\theta) d\theta; \]

Bellman, R. 1941 have proved that Lambert summability of an orthogonal expansion

\[f \sim \sum_{n=0}^{\infty} c_n \varphi_n (\theta). \]

Theorem 7.11

Lambert summability of an orthogonal expansion

\[f \sim \sum_{n=0}^{\infty} c_n \varphi_n (\theta) \]

implies the convergence of partial sums \(S_{2^n} \) of orthogonal expansion

\[f \sim \sum_{n=0}^{\infty} c_n \varphi_n (\theta). \]

In Chapter VII, we have generalized the Theorem 7.10 for generalized Lambert summability which is as follows:

Theorem 7H

Generalized Lambert summability of orthogonal expansion

\[f \sim \sum_{n=0}^{\infty} c_n \varphi_n (\theta) \]

implies the convergence of partial sums \(S_{2^n} \) of orthogonal expansion

\[f \sim \sum_{n=0}^{\infty} c_n \varphi_n (\theta). \]

7.6 Generalized Product Summability of an Orthogonal Series

The product summability was introduced by Kransniqi, Xh. Z. 2013.

Okuyama, Y. 2002 has proved the following two theorems:

Theorem 7.12

If the series is

\[\sum_{n=0}^{\infty} \left(\sum_{j=1}^{n} \left(\frac{R_j^n}{R_n} - \frac{R_j^{n-1}}{R_{n-1}} \right)^2 \right) \left| c_j \right|^2 \]

converges, then the orthogonal series

\[\sum_{j=0}^{\infty} c_j \varphi_j(x) \]

is summable \(|N,p,q|\) almost everywhere.
Theorem 7.13
Let \(\{\Omega(n)\} \) be a positive sequence such that \(\frac{\Omega(n)}{n} \) is a non-increasing sequence and the series
\[
\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}
\]
converges. Let \(\{p_n\} \) and \(\{q_n\} \) be non-negative sequences. If the series
\[
\sum_{n=1}^{\infty} |c_n|^2 \Omega(n) \omega^{(i)}(n)
\]
converges, then the orthogonal series
\[
\sum_{j=0}^{\infty} c_j \varphi_j(x)
\]
is \(|N, p, q|\) summable almost everywhere, where \(\omega^{(i)}(n) \) is defined by
\[
\omega^{(i)}(j) := j^{-1} \sum_{n=j}^{\infty} n^2 \left(\frac{R_n^i}{R_n} - \frac{R_{n-1}^i}{R_{n-1}} \right)^2.
\]
Krasniqi, Xh. Z. 2013(2) have proved the following theorems:

Theorem 7.14
If for \(1 \leq k \leq 2 \), the series
\[
\sum_{n=1}^{\infty} \left\{ n^{2-2/k} \sum_{i=1}^{n} \left(\frac{R_n^i R_n^{-1} R_n^j}{R_n} - \frac{R_{n-1}^i R_n^{-1} R_{n-1}^j}{R_{n-1}} \right)^2 |c_j|^2 \right\}^{k/2}
\]
converges, then the orthogonal series
\[
\sum_{n=0}^{\infty} c_n \varphi_n(x)
\]
is summable \(|(N, p_n, q_n)(N, q_n, p_n)|, k \geq 1\) almost everywhere.

Theorem 7.15
Let \(1 \leq k \leq 2 \) and \(\Omega(n) \) be a positive sequence such that \(\frac{\Omega(n)}{n} \) is a non-increasing sequence and the series
\[
\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)}
\]
converges,
Let \(\{p_n\} \) and \(\{q_n\} \) be non-negative sequences.
If the series
\[
\sum_{n=0}^{\infty} |c_n|^2 \Omega^{k-1}(n) R^{(k)}(n)
\]
converges, then the orthogonal series,
where

\[\Re(\kappa) = 1 - \frac{1}{2k - 1} \sum_{n=1}^{\infty} n^2 |c_n|^2 \left(\frac{\tilde{R}_n^i}{R_n} - \frac{\tilde{R}_{n-1}^i}{R_{n-1}} \right)^2 \]

In this chapter VIII, we prove and extend the result of Krasniqi, Xh. 2013 to \(|\bar{N}, p_n, q_n|_k \); \(k \geq 1 \) summability.

Our theorems are as follows:

Theorem 7I

If for \(1 \leq k \leq 2 \), the series

\[\sum_{n=1}^{\infty} \sqrt{n^2 - \frac{2}{k}} \left(\sum_{i=1}^{n} \left(\frac{\tilde{R}_n^i}{R_n} - \frac{\tilde{R}_{n-1}^i}{R_{n-1}} \right)^2 \right)^{\frac{k}{2}} < \infty \]

converges, then the orthogonal series

\[\sum_{n=0}^{\infty} c_n \varphi_n(x) \]

is summable \(|(\bar{N}, p_n, q_n)(\bar{N}, q_n, p_n)|_k \), almost everywhere.

Theorem 7J

Let \(1 \leq k \leq 2 \) and \(\Omega(n) \) be a positive sequence such that \(\left\{ \frac{\Omega(n)}{n} \right\} \) is a non-increasing sequence and the series

\[\sum_{n=1}^{\infty} \frac{1}{n\Omega(n)} \]

converges.

Let \(\{p_n\} \) and \(\{q_n\} \) be non-negative sequence. If the series

\[\sum_{n=1}^{\infty} |c_n|^2 \Omega^{-1}(n) \tilde{\Re}(\kappa)(n) < \infty \]

then the series,

\[\sum_{n=1}^{\infty} c_n \varphi_n(x) \]

is \(|(\bar{N}, p_n, q_n)(\bar{N}, q_n, p_n)|_k \) summable almost everywhere, where \(\tilde{\Re}(\kappa)(n) \) is defined by

\[\tilde{\Re}(\kappa)(i) := \frac{1}{i^{k-1}} \sum_{n=1}^{\infty} n^2 \left(\frac{\tilde{R}_n^i}{R_n} - \frac{\tilde{R}_{n-1}^i}{R_{n-1}} \right)^2 \]
REFERENCES

59. Krasniqi, Xh. Z. (2010). A note on \(|N,p,q|_k\), \((1 \leq k \leq 2)\) summability of orthogonal series, Note di Mat., 30, 135-139.

82. Leindler, L. and Tandori, K. (1986). On absolute summability of orthogonal
Math., 80, 167-190.
84. Lorentz, G. G. (1951). Riesz method of summation and orthogonal series,
16(2),363-368
86. Mears, F. M. (1935). Some multiplication theorems for the Nörlund means,
38, 594-601.
9,168-207.
89. Meder, J. (1958). On the summability almost everywhere of orthogonal series
series by the method of first logarithmic means, Rozprawy Mat., 17, 3-34.
91. Meder, J. (1961). On very strong Riesz summability of orthogonal series,
Math., 12, 231-256.

130. Plancherel, M. (1910). Sätze über systeme besehränkter orthogonalfunktio-
nen, Math. Annalen, 68, 270-278.

