List of Figure

Figure 1.1 Energy level diagram of doped inorganic luminescent material.
6

Figure 1.2 Different mechanism for absorption and emission processes takes place in luminescent material.
6

Figure 1.3 Formation of basic pyrophosphate “the basic condensed phosphates”.
9

Figure 2.1 Published articles in each year according to Web of Science, August, 2016.
30

Figure 2.2 Different steps of combustion synthesis method adopted for synthesis of Rare earth doped Sr$_2$P$_2$O$_7$.
32

Figure 3.1 Bruker D8 advance x-ray diffractometer.
43

Figure 3.2 JASCO – 4600 Fourier Transform Infra-Red spectrometer.
45

Figure 3.3 “JSM-7500F” filed emission scanning electron microscope (SEM).
47

Figure 3.4 XRD patterns of pure Sr$_2$P$_2$O$_7$ and JCPDS: 24-1011.
49

Figure 3.5 XRD patterns of Sr$_2$P$_2$O$_7$ analysed using powderX software.
49

Figure 3.6 (A) XRD patterns of Sr$_2$P$_2$O$_7$: x Ce$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) phosphor and JCPDs Card No. 24-1011. (B) Magnified XRD patterns.
50

Figure 3.7 (A) XRD patterns of Sr$_2$P$_2$O$_7$: x Eu$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%) phosphor and JCPDs Card No. 24-1011. (B) Magnified XRD patterns.
51

Figure 3.8 (A) XRD patterns of Sr$_2$P$_2$O$_7$: x Tb$^{3+}$ (x = 0.5, 2.5 and 5.0 mol%) phosphor and JCPDs Card No. 24-1011. (B) Magnified XRD patterns.
52

Figure 3.9 (A) XRD patterns of Sr$_2$P$_2$O$_7$: x Dy$^{3+}$ (x = 0.5, 1.5 and 2.5 mol%) phosphor and JCPDs Card No. 24-1011. (B) Magnified XRD patterns.
53

Figure 3.10 (A) XRD patterns of Sr$_2$P$_2$O$_7$: x Er$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) phosphor and JCPDs Card No. 24-1011. (B) Magnified XRD patterns.
54

Figure 3.11 (A) XRD patterns of Sr$_2$P$_2$O$_7$: x Gd$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) phosphor and JCPDs Card No. 24-1011. (B) Magnified XRD patterns.
55

Figure 3.12 Williamson-Hall plot: (A) Sr$_2$P$_2$O$_7$: 0.5% Ce$^{3+}$; (B) Sr$_2$P$_2$O$_7$: 0.5% Eu$^{3+}$; (C) Sr$_2$P$_2$O$_7$: 0.5% Tb$^{3+}$; (D) Sr$_2$P$_2$O$_7$: 0.5% Dy$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 0.5% Er$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 0.5% Gd$^{3+}$ phosphor.
56
Figure 3.13 (A) XRD patterns of Sr$_2$P$_2$O$_7$: 1.0 mol% Ce$^{3+}$, 1.0 mol% RE (RE = Eu$^{3+}$, Tb$^{3+}$, Dy$^{3+}$, Er$^{3+}$, Gd$^{3+}$, Sm$^{3+}$, Nd$^{3+}$) phosphor and JCPDs Card No. 24-1011; (B) Magnified XRD patterns.

Figure 3.14 Williamson-Hall plot: (A) Sr$_2$P$_2$O$_7$: 1.0% Ce$^{3+}$, 1.0% Eu$^{3+}$; (B) Sr$_2$P$_2$O$_7$: 1.0% Ce$^{3+}$, 1.0% Tb$^{3+}$; (C) Sr$_2$P$_2$O$_7$: 1.0% Ce$^{3+}$, 1.0% Dy$^{3+}$; (D) Sr$_2$P$_2$O$_7$: 1.0% Ce$^{3+}$, 1.0% Er$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 1.0% Ce$^{3+}$, 1.0% Gd$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 1.0% Ce$^{3+}$, 1.0% Sm$^{3+}$ phosphor.

Figure 3.15 FTIR spectra of Sr$_2$P$_2$O$_7$: x Ce$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%).

Figure 3.16 FTIR spectra of Sr$_2$P$_2$O$_7$: x Eu$^{3+}$ (x = 0.1, 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%).

Figure 3.17 FTIR spectra of Sr$_2$P$_2$O$_7$: x Tb$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%).

Figure 3.18 FTIR spectra of Sr$_2$P$_2$O$_7$: x Dy$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%).

Figure 3.19 FTIR spectra of Sr$_2$P$_2$O$_7$: x Er$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%).

Figure 3.20 FTIR spectra of Sr$_2$P$_2$O$_7$: x Gd$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%).

Figure 3.21 FTIR Spectra of Sr$_2$P$_2$O$_7$: 1.0 mol% Ce$^{3+}$, 1.0 mol% RE (RE = Eu$^{3+}$, Tb$^{3+}$, Dy$^{3+}$, Er$^{3+}$, Gd$^{3+}$ and Sm$^{3+}$).

Figure 3.22 SEM images; (A), (B) Sr$_2$P$_2$O$_7$: 0.5 mol% Ce$^{3+}$; (C), (D) Sr$_2$P$_2$O$_7$: 2.0 mol% Ce$^{3+}$.

Figure 3.23 SEM images; (A), (B) Sr$_2$P$_2$O$_7$: 1.0 mol% Eu$^{3+}$; (C), (D) Sr$_2$P$_2$O$_7$: 2.5 mol% Eu$^{3+}$.

Figure 3.24 SEM images; (A), (B), (C) Sr$_2$P$_2$O$_7$: 0.5 mol% Tb$^{3+}$; (D), (E) Sr$_2$P$_2$O$_7$: 2.5 mol% Tb$^{3+}$.

Figure 4.1 Jablonski energy level diagram for the photoluminescence mechanism.

Figure 4.2 Shimadzu spectrofluorophotometer for PL measurements.

Figure 4.3 Three types of white LEDs manufactured by different methods; (A) Red + Green + Blue LEDs. (B) UV LED + RGB phosphor. (C) Blue LED + Yellow phosphor.

Figure 4.4 Working of fluorescence lamp; (A) Hg Discharge, (B) Emission of visible light.
Figure 4.5 Eight of the most relevant up-conversion processes: (A) anti-Stokes Raman emission, (B) 2-photon excitation, (C) second harmonic generation, (D) cooperative luminescence, (E) cooperative sensitization, (F) excited state absorption, (G) energy transfer up-conversion, and (H) sensitized energy transfer up-conversion.

Figure 4.6 PL excitation spectra of Ce$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.7 PL emission spectra: (A) $\lambda_{\text{Excitation}} = 254$ nm; (B) $\lambda_{\text{Excitation}} = 268$ nm; (C) $\lambda_{\text{Excitation}} = 310$ nm of Sr$_2$P$_2$O$_7$: x% Ce$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%) phosphor.

Figure 4.8 Plot of PL emission intensity (I) \rightarrow Concentration of Ce$^{3+}$ in Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.9 Plot of PL emission intensity (I) \rightarrow Crystallite Size of Ce$^{3+}$ in Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.10 Excitation spectra of Sr$_2$P$_2$O$_7$: x Eu$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%) phosphor.

Figure 4.11 PL emission spectra: (A) $\lambda_{\text{Excitation}} = 266$ nm; (B) $\lambda_{\text{Excitation}} = 396$ nm; (B) $\lambda_{\text{Excitation}} = 466$ nm, of Sr$_2$P$_2$O$_7$: x Eu$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 and 5.0 mol%) phosphor.

Figure 4.12 The decay curves of Sr$_2$P$_2$O$_7$: 5.0% Eu$^{3+}$ phosphor: (A) Excited at 266 nm, Monitored at 618 nm; (B) Excited at 396 nm, Monitored at 617 nm; (C) Excited at 466nm, Monitored at 618 nm.

Figure 4.13 CIE chromaticity coordinate diagram of Sr$_2$P$_2$O$_7$: 5.0% Eu$^{3+}$ phosphor.

Figure 4.14 PL emission intensity (I) \rightarrow Concentration of Eu$^{3+}$ graph of Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.15 Plot of PL emission intensity (I) \rightarrow Crystallite Size of Eu$^{3+}$ in Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.16 PL excitation spectra of Sr$_2$P$_2$O$_7$: 0.5 % Tb$^{3+}$ phosphor for $\lambda_{\text{Excitation}} = 545$ nm.

Figure 4.17 PL emission spectra of Sr$_2$P$_2$O$_7$: x% Tb$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5, 5.0) phosphor for $\lambda_{\text{Excitation}} = 232$ nm.

Figure 4.18 Plot of PL emission intensity (I) \rightarrow Crystallite Size of Tb$^{3+}$ in Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.19 Energy level diagram of Sr$_2$P$_2$O$_7$: Tb$^{3+}$ phosphor.

Figure 4.20 CIE chromaticity coordinate diagram of Sr$_2$P$_2$O$_7$: x% Tb$^{3+}$ phosphor.

Figure 4.21 PL emission intensity (I) \rightarrow Concentration of Tb$^{3+}$ in Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.22 PL excitation spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Eu$^{3+}$doped Sr$_2$P$_2$O$_7$ phosphor.
Figure 4.23 PL emission spectra of 1.0mol% Ce$^{3+}$, 1.0mol% Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.24 CIE chromaticity coordinate diagram of 0.1mol% Ce$^{3+}$, 0.1mol% Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.25 PL excitation spectra of 1.0mol% Ce$^{3+}$, 1.0mol% Tb$^{3+}$ co-doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.26 PL emission spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Tb$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.27 CIE chromaticity coordinate diagram of 0.1mol% Ce$^{3+}$, 0.1mol% Tb$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.28 PL excitation spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Dy$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.29 PL emission spectra of 1.0 mol% Ce$^{3+}$, 1.0mol% Dy$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.30 CIE chromaticity coordinate diagram of 0.1mol% Ce$^{3+}$, 0.1mol% Dy$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.31 PL excitation spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Sm$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.32 PL emission Spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Sm$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.33 CIE chromaticity coordinate diagram of 0.1mol% Ce$^{3+}$, 0.1mol% Sm$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.34 PL excitation Spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Er$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.35 PL emission spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Er$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.36 PL emission spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Gd$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 4.37 PL emission spectra of 0.1mol% Ce$^{3+}$, 0.1mol% Gd$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor.

Figure 5.1 Energy levels diagram of an insulator and semiconductor at absolute zero temperature.

Figure 5.2 (a) Energy-level diagram of the energy storage stage for TL processes; (b) Energy-level diagram of the energy release stage for TL processes.

Figure 5.3 Block diagram of the TL Reader.

Figure 5.4 PC controlled TL reader type TL1009 manufactured by Nucleonix.

Figure 5.5 Chart of applications of TL in different research disciplines.

Figure 5.6 TL glow curve of Sr$_2$P$_2$O$_7$: x Ce$^{3+}$ (x = 0.5, 1.0, 1.5, 2.0, 2.5 mol%) phosphors irradiated by β-radiation for 5 minute of 0.48 Gy dose.
Figure 5.7 TL glow curves for various time of β-irradiation: (A) Sr₂P₂O₇: 0.5 mol% Ce³⁺; (B) Sr₂P₂O₇: 1.0 mol% Ce³⁺; (C) Sr₂P₂O₇: 1.5 mol% Ce³⁺; (D) Sr₂P₂O₇: 2.0 mol% Ce³⁺; (E) Sr₂P₂O₇: 2.5 mol% Ce³⁺.

Figure 5.8 GCD fitting of TL glow curve of 2.5 mol% Ce³⁺ doped Sr₂P₂O₇ irradiated by β- radiation for 5 minute of 0.48 Gy dose.

Figure 5.9 Maximum TL intensity ‘Iₘ’ vs β-irradiation time ‘t’ graph of Ce³⁺ doped Sr₂P₂O₇.

Figure 5.10 TL glow curve of Sr₂P₂O₇: 2.5 mol% Ce³⁺ phosphor irradiated by β- radiation for 5 minute of 0.48 Gy dose.

Figure 5.11 Maximum TL intensity ‘Iₘ’ vs Fading time ‘t’ graph of Sr₂P₂O₇: 2.5 mol% Ce³⁺ phosphor irradiated by β- radiation for 5 minute of 0.48 Gy dose.

Figure 5.12 TL intensity vs Number of cycles of uses for Sr₂P₂O₇: 2.5 mol% Ce³⁺.

Figure 5.13 TL glow curve of Sr₂P₂O₇: x Tb³⁺ (x = 0.5, 1.0, 1.5, 2.0, 2.5, 5.0 mol%) phosphors irradiated by β-iradiation for 5 minute of 0.48 Gy dose.

Figure 5.14 TL glow curve for various time of β-iradiation: (A) Sr₂P₂O₇: 0.5 mol% Tb³⁺; (B) Sr₂P₂O₇: 1.0 mol% Tb³⁺; (C) Sr₂P₂O₇: 1.5 mol% Tb³⁺; (D) Sr₂P₂O₇: 2.0 mol% Tb³⁺; (E) Sr₂P₂O₇: 2.5 mol% Tb³⁺; (F) Sr₂P₂O₇: 5.0 mol% Tb³⁺.

Figure 5.15 GCD fitting of TL glow curves of (A) Sr₂P₂O₇: 0.5 mol% Tb³⁺; (B) Sr₂P₂O₇: 1.0 mol% Tb³⁺; (C) Sr₂P₂O₇: 1.5 mol% Tb³⁺; (D) Sr₂P₂O₇: 2.0 mol% Tb³⁺; (E) Sr₂P₂O₇: 2.5 mol% Tb³⁺; (F) Sr₂P₂O₇: 5.0 mol% Tb³⁺.

Figure 5.16 Maximum TL intensity ‘Iₘ’ vs β-irradiation time ‘t’ graph of Tb³⁺ doped Sr₂P₂O₇.

Figure 5.17 TL glow curve of Sr₂P₂O₇: 5.0 mol% Tb³⁺ phosphor irradiated by β- radiation for 5 minute of 0.48 Gy dose.

Figure 5.18 Maximum TL intensity ‘Iₘ’ vs Fading time ‘t’ graph of 5.0 mo% Tb³⁺ doped Sr₂P₂O₇ irradiated by β- radiation for 5 minute of 0.48 Gy dose.

Figure 5.19 TL glow curve of Sr₂P₂O₇: x Eu³⁺ (x = 0.5, 1.0, 1.5, 2.0, 2.5, 5.0 mol%) phosphors irradiated by β-iradiation for 5 minute of 0.48 Gy dose.

Figure 5.20 TL glow curve for various time of β-iradiation: (A) Sr₂P₂O₇: 0.5 mol% Eu³⁺; (B) Sr₂P₂O₇: 1.0 mol% Eu³⁺; (C) Sr₂P₂O₇: 1.5 mol% Eu³⁺; (D) Sr₂P₂O₇: 2.0 mol% Eu³⁺; (E) Sr₂P₂O₇: 2.5 mol% Eu³⁺; (F) Sr₂P₂O₇: 5.0 mol% Eu³⁺.
Figure 5.21 GCD fitting of TL glow curves of (A) Sr$_2$P$_2$O$_7$: 0.5 mol% Eu$^{3+}$; (B) Sr$_2$P$_2$O$_7$: 1.0 mol% Eu$^{3+}$; (C) Sr$_2$P$_2$O$_7$: 1.5 mol% Eu$^{3+}$; (D) Sr$_2$P$_2$O$_7$: 2.0 mol% Eu$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 2.5 mol% Eu$^{3+}$; (F) Sr$_2$P$_2$O$_7$: 5.0 mol% Eu$^{3+}$.

Figure 5.22 (a) ln[TL/(Area)b] vs 1/kT; (b) Residue ln[TL/(Area)b] vs 1/kT graphs of Sr$_2$P$_2$O$_7$: 0.5 mol% Eu$^{3+}$ irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.23 (a) ln(I) vs 1/kT; (b) Residue [ln(I)] vs 1/kT graphs of Sr$_2$P$_2$O$_7$: 0.5 mol% Eu$^{3+}$ irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.24 Thermoluminescence mechanism involved in Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$.

Figure 5.25 Maximum TL intensity ‘I_M’ vs β-irradiation time ‘t’ graph of Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$ irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.26 TL glow curve of 5.0 mol% Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$ for fading time irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.27 Maximum TL intensity ‘I_M’ vs Fading time ‘t’ graph of 5.0 mol% Eu$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.28 TL glow curve for various time of β-irradiation: (A) Sr$_2$P$_2$O$_7$: 0.5 mol% Dy$^{3+}$; (B) Sr$_2$P$_2$O$_7$: 1.0 mol% Dy$^{3+}$; (C) Sr$_2$P$_2$O$_7$: 1.5 mol% Dy$^{3+}$; (D) Sr$_2$P$_2$O$_7$: 2.0 mol% Dy$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 2.5 mol% Dy$^{3+}$.

Figure 5.29 GCD fitting of TL glow curves of (A) Sr$_2$P$_2$O$_7$: 0.5 mol% Dy$^{3+}$; (B) Sr$_2$P$_2$O$_7$: 1.0 mol% Dy$^{3+}$; (C) Sr$_2$P$_2$O$_7$: 1.5 mol% Dy$^{3+}$; (D) Sr$_2$P$_2$O$_7$: 2.0 mol% Dy$^{3+}$; (E) Sr$_2$P$_2$O$_7$: 2.5 mol% Dy$^{3+}$.

Figure 5.30 Maximum TL intensity ‘I_M’ vs β-irradiation time ‘t’ graph of Dy$^{3+}$ doped Sr$_2$P$_2$O$_7$ irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.31 TL glow curve of 2.5 mol% Dy$^{3+}$ doped Sr$_2$P$_2$O$_7$ for fading time irradiated by β-radiation for 5 minute of 0.48 Gy dose.

Figure 5.32 Maximum TL intensity ‘I_M’ vs Fading time ‘t’ graph of 2.5 mol% Dy$^{3+}$ doped Sr$_2$P$_2$O$_7$ phosphor irradiated by β-radiation for 5 minute of 0.48 Gy dose.