CONTENTS

Acknowledgements

Preface

List of symbols, Abbreviations and Nomenclatures

Chapter 1: Introduction

1.1 Significance of Current Mode Devices
1.2 Evolution of Current Mode Devices
1.3 Current Mode Building Blocks
1.4 Current Amplifiers

References

Chapter 2: Different Current Mode Devices

2.1 Introduction
2.2 Basic Current Conveyor (CC)
2.3 Classification of Current Conveyors
2.3.1 Port Y based classification
2.3.2 Port X based classification
2.3.3 Port Z based classification
2.4 Current-Feedback Operational Amplifier (CFOA)
2.5 Operational Floating Conveyor (OFC)
2.6 Composite Current Conveyors (CCC)
2.7 Fully Differential Current Conveyor (FDCCII)
2.8 Operational Floating Current Conveyor (OFCC)
2.9 Operational Transconductance Amplifier (OTA)
2.10 Differential Difference Current Conveyor (DDCC)
2.11 Current Differential Buffered Amplifier (CDBA)
2.12 Current Differencing Transconductance Amplifier (CDTA)
2.13 Dual Output –Current Difference Transconductance Amplifier (DO-CDTA)
2.14 Current Controlled Current Difference Transconductance Amplifier (CC-CDTA)
2.15 Dual Output Current Controlled Current Difference Transconductance Amplifier (DO- CCCDTA)
2.16 Current Follower Transconductance Amplifier (CFTA)
Chapter 3: Active filters based on Current Mode Devices

3.1 Introduction
3.1.1 Filters based on Second Generation Current Conveyors
3.1.2 Filters based on Second Generation Current Controlled Current Conveyors
3.3 Filters based on Operational Transconductance Amplifiers
3.4 Filters based on Current-Feedback Amplifiers
3.5 Filters based on Current-Difference Buffer Amplifiers
3.6 Filters based on Current Differencing Transconductance Amplifier
3.7 Conclusion

Chapter 4: Filters based on Current Feedback Amplifiers (CFAs)

4.1 Introduction
4.2 CFA - AD-844 description
4.2.1 Salient features of AD-844
4.2.2 Equivalent circuit of AD-844
4.2.3 Internal architecture of AD-844
4.3 Voltage and Current mode KHN filter: A Current Feedback Amplifier (CFA) approach
4.3.1 Proposed voltage-mode second-order KHN filter using CFAs
4.3.2 Proposed current-mode second-order KHN filter using CFAs
4.3.3 Simulation results
4.4 Filters using single CFA
4.4.1 High pass filter
4.4.2 Low pass filter
4.4.3 Band pass filter
Chapter 5: Filters based on Current-Differencing
Transconductance Amplifier (CDTA)

5.1 Introduction
5.2 Proposed switched capacitor biquad filter using CDTA
5.3 Simulation results of switched capacitor biquad filter using CDTA
5.4 Conclusion
References

Chapter 6: Log-Antilog and Multiplier employing CDTA

6.1 Introduction
6.2 Logarithmic amplifier circuit
 6.2.1 Simulation results
6.3 Anti logarithmic amplifier circuit
 6.3.1 Simulation results
6.4 Current mode multiplier employing single Current Differencing Transconductance Amplifier
 6.4.1 Simulation results
6.5 Conclusion
References

Chapter 7: Conclusion

7.1 Summary
7.2 Scope for Future work
List of Publications