LIST OF FIGURES

Figure 1.1: Per capita waste generation in high, low and medium income countries
Figure 1.2: MSW generation in Indian cities
Figure 1.3: Functional elements of waste management
Figure 1.4: Collection of waste in different cities
Figure 1.5: Components of the sanitary landfill site
Figure 1.6: Single liner system in sanitary landfill
Figure 1.7: Top liner system of landfill
Figure 1.8: Waste degradation and associate emission
Figure 1.9: Landfill gas production in various phases
Figure 1.10: Population affected vicinity of 50 dumpsite
Figure 2.1: Location of Chandigarh, Mohali and Panchkula landfill site
Figure 2.2: Temperature values of Chandigarh, Mohali and Panchkula landfill leachate
Figure 2.3: pH values in leachate from tricity landfill
Figure 2.4: Electrical conductivity in leachate samples of tricity landfills
Figure 2.5: Total dissolved solids in leachate samples of tricity landfills
Figure 2.6: Total alkalinity in the leachate of tricity landfill sites
Figure 2.7: Total hardness in the leachate of tricity landfill sites
Figure 2.8: Calcium in leachate samples of tricity
Figure 2.9: Magnesium in leachate samples of tricity landfill
Figure 2.10: Chemical oxygen demand in the leachate of tricity landfill sites
Figure 2.11: Biochemical oxygen demand in tricity landfill leachate
Figure 2.12: Ammoniacal nitrogen in tricity landfill leachate
Figure 2.13: Chloride values of tricity landfill leachate
Figure 2.14: Sulphate in the leachate of tricity landfill sites
Figure 2.15: Nitrate in leachate samples of tricity landfill sites
Figure 2.16: Phosphate in leachate samples of tricity landfill
Figure 2.17: Fluoride in the leachate of tricity landfill
Figure 2.18: Sodium in the leachate samples of tricity landfill
Figure 2.19: Potassium in the leachate samples of tricity landfill
Figure 2.20: Lead in leachate of tricity landfills
Figure 2.21: Copper in the tricity landfills
Figure 2.22: Zinc in leachate of tricity landfills
Figure 2.23: Cadmium in the leachate of tricity landfills
Figure 2.23: Leachate pollution index of Indian landfill sites
Figure 3.1: Location of water sampling sites around (a) Chandigarh (b) Mohali (c) Panchkula
Figure 3.2: Exposure pathways of landfill sites
Figure 3.3: Temperature in groundwater samples around of landfill sites
Figure 3.4: pH of groundwater samples collected from the vicinity area of landfills
Figure 3.5: Electrical conductivity of groundwater samples collected around landfill sites
Figure 3.6: Total dissolved solids in groundwater samples to tricity landfill
Figure 3.7: Total alkalinity in groundwater samples
Figure 3.8: Total hardness in groundwater samples
Figure 3.9: Calcium in groundwater samples
Figure 3.10: Magnesium in groundwater samples
Figure 3.11: Chemical Oxygen Demand in groundwater samples
Figure 3.12: Biological Oxygen Demand in groundwater samples
Figure 3.13: Sulphate in groundwater samples
Figure 3.14: Phosphate in groundwater samples
Figure 3.15: Chloride in groundwater samples
Figure 3.16: Fluoride in groundwater samples
Figure 3.17: Nitrate in groundwater samples
Figure 3.18: Ammoniacal nitrogen in groundwater samples
Figure 3.19: Sodium in groundwater samples
Figure 3.20: Potassium in groundwater samples
Figure 3.21: Zinc in groundwater samples
Figure 3.22: Lead in groundwater samples
Figure 3.23: Copper in groundwater samples
Figure 3.24: Geochemical classification of groundwater samples in pre-monsoon period
Figure 3.25: Geochemical classification of groundwater samples in post-monsoon period
Figure 4.1: FTIR spectra of sugarcane bagasse ash
Figure 4.2: XRD pattern of sugarcane bagasse as
Figure 4.3: SEM analysis of SBA before adsorption
Figure 4.4: SEM analysis of sugarcane bagasse ash after adsorption process
Figure 4.5: Ammoniacal nitrogen removal efficiency of sugarcane bagasse ash at various contact time (30-220 min) and dose (0.2-6 g) using ammoniacal nitrogen concentration 50 ppm and pH 8 at temperature 25°C
Figure 4.6: Effect of pH on the adsorption uptake of ammoniacal nitrogen on sugarcane bagasse ash (ammonical nitrogen concentration 50 ppm, dose 2 g at 25°C
Figure 4.7: Point zero charge of sugarcane bagasse ash at temperature 24°C
Figure 4.8: Ammoniacal nitrogen removal at different temperature (20-60°C) using ammoniacal nitrogen concentration 50 ppm, pH 8 and contact time 180 min
Figure 4.9: Isotherms plot for the adsorption of ammonical nitrogen on to sugarcane bagasse ash at 40 °C
Figure 4.10: Langmuir isotherms plot of ammoniacal nitrogen on sugarcane bagasse ash at (a) 20°C (b) 30°C (c) 40°C (conditions: Initial concentration 50 ppm, optimum pH 8, dose 2g)
Figure 4.11: Pseudo-second order plot for ammoniacal nitrogen uptake using sugarcane bagasse ash at different temperature (a) 20°C,(b) 30°C (c) 40°C (conditions: 50 ppm concentration, optimum pH 8, does 2g)
Figure 4.12: Weber and Morris plot of ammoniacal nitrogen removal on sugarcane bagasse ash at different temperature (a) 20°C (b) 30°C (c) 40°C
Figure 4.13: Boyd model plot between B_t and t at (a) 20°C, (b) 30°C (c) 40°C
Figure 5.1: FTIR spectra of zeolite (a) before adsorption (b) after adsorption
Figure 5.2: XRD spectra of zeolite (a) before adsorption (b) after adsorption
Figure 5.3: Scanning electronic micrograph of zeolite (a) before (b) after adsorption

Figure 5.4: Ammoniacal nitrogen removal efficiency of zeolite at different contact time and dose (ammoniacal nitrogen concentration 50 ppm, temperature 30°C, pH 10)

Figure 5.5: Effect of pH on ammoniacal nitrogen uptake using zeolite at temperature 30°C, dose 0.8 g, ammoniacal nitrogen concentration 50 ppm

Figure 5.6: Percentage removal efficiency of zeolite for ammoniacal nitrogen at different temperature (initial concentration 50 ppm, pH 10, dose 0.8 g)

Figure 5.7: (a) Langmuir, (b) Freundlich (c) Temkin (d) Dubinin isotherms plot for ammonical nitrogen at 30°C

Figure 5.8: Freundlich isotherm of ammoniacal nitrogen on to zeolite at various temperature (a) 20°C (b) 30°C (c) 40°C

Figure 5.9: Temkin isotherm of ammoniacal nitrogen at (a) 20°C (b) 30°C (c) 40°C (ammoniacal nitrogen concentration 50 ppm, pH 10, dose 0.8 g)

Figure 5.9: Dubinin isotherm of ammoniacal nitrogen at (a) 20°C (b) 30°C (c) 40°C (ammoniacal nitrogen concentration 50 ppm, pH 10, dose 0.8g)

Figure 5.10: Pseudo second order kinetics at (a) 20°C (b) 30°C (c) 40°C (initial ammoniacal nitrogen concentration 50 ppm, pH 10, dose 0.8g)

Figure 5.11: Intra-particle diffusion model plot at (a) 20°C (b) 30°C (c) 40°C (ammoniacal nitrogen concentration 50 ppm, pH 10 dose 0.8g)

Figure 5.12: Boyd model plot at (a) 20°C (b) 30°C (c) 40°C (concentration 50 ppm, pH 10 dose 0.8g)