REFERENCES


Al-Qodah, Z., Daghistani, H., & Alananbeh, K. (2007). Isolation and characterization of thermostable protease producing *Bacillus pumilus* from...


Litter Degradation and Diversity of Litter Degrading Bacteria in Pampadum Shola National Park


soil bacterial taxa to carbon substrates of varying chemical recalcitrance. 

*Frontiers in microbiology,* 2, 94.


*Litter Degradation and Diversity of Litter Degrading Bacteria in Pampadum Shola National Park*


Kirschbaum, M. U. (2004). Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss?. Global Change Biology, 10(11), 1870-1877.


References


Kurihara Y., & Kikkawa J. (1986) – Trophic relations of decomposers (In: Community ecol
Litter Degradation and Diversity of Litter Degradating Bacteria in Pampadum Shola National Park


exotic plantations and a native forest in the southwestern highlands of Ethiopia. Soil Biology and Biochemistry, 39(9), 2317-2328.


Luizao, R. C., Bonde, T. A., & Rosswall, T. (1992). Seasonal variation of soil microbial biomass—the effects of clearfelling a tropical rainforest and
establishment of pasture in the Central Amazon. *Soil Biology and Biochemistry*, 24(8), 805-813.


References


Nohrstedt, H.O., Arnedbrant, K., Baath, E., & Soderstrom, B. (1989): Changes in carbon content, respiration rate, ATP content and microbial biomass in


---

*Litter Degradation and Diversity of Litter Degrading Bacteria in Pampadum Shola National Park*


References


References


Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A., & Richter, A. (2010). Determination of gross rates of amino acid production and immobilization
in decomposing leaf litter by a novel 15N isotope pool dilution technique. *Soil Biology and Biochemistry, 42*(8), 1293-1302.


Yamaguchi, A., Nakatani, M., & Sawai, T. (1992). Aspartic acid-66 is the only essential negatively charged residue in the putative hydrophilic loop region of the metal-
tetracycline/hydrogen ion antiporter encoded by transposon Tn10 of Escherichia coli. *Biochemistry, 31*(35), 8344-8348.


