Chapter VI

ON A SPECIAL FORM OF T-TENSOR AND T^2-LIKE FINSLER SPACE
ON A SPECIAL FORM OF T-TENSOR AND T2-LIKE FINSLER SPACE

1. INTRODUCTION:

Let \(f^n \) be an \(n \)-dimensional Finsler space equipped with the metric function \(L(x,y) \). If \(C_{ijk}(x,y) \) be the \((h) \) hv-torsion tensor of \(F^n \) then its \(v \)-covariant differentiation denoted by \(|k \) is used in defining the tensor \(T_{hijk} \) in the form (Matsushita 1977a).

\[
T_{hijk} = L C_{hijk} + C_{ijk} I_h I_i + C_{ijk} I_j I_k + C_{hik} I_j + C_{hij} I_k
\]

Where \(I_i \) are covariant components of unit vector along the elements of support \(y^i \).

In [10], three special forms of \(T_{hijk} \) given by

(A) \[
T_{hijk} = p \left\{ h_{hi} h_{jk} + h_{bj} h_{ik} + h_{hk} h_{ij} \right\}
\]

(B) \[
T_{hijk} = h_{hi} p_{jk} + h_{hj} p_{ik} + h_{hk} p_{lj} + h_{lk} p_{lj} + h_{lj} p_{hk} + h_{jk} p_{hi}
\]

(C) \[
T_{hijk} = a_n c_{ijk} + a_n c_{hjk} + a_n c_{hij} + a_n h_{i} Q_{h} + h_{ij} Q_{ik} + h_{i} Q_{hj} + h_{hj} Q_{h} + h_{jk} Q_{hi}
\]

Where \(p \) is a certain scalar and \(h_{ij} \) is an angular metric tensor defined by

\[
h_{ij} = g_{ij} - I_i I_j
\]

\(p_{ij} \) and \(h_{ij} \) are components of certain tensor fields and \(a_n \) are components of a covariant vector. Examples of Finsler space having these forms of \(T_{hijk} \) are given in our previous paper.

In this chapter, we shall study the properties of non-Riemannian Finsler space in which \(T_{hijk} \) is of the form where \(p \) is a scalar function, positively homogeneous of degree three in \(y^i \) \(a_n \) are components of covariant vector field which is positively homogeneous of degree two in \(y^i \) and \(C_{ij} \) is torsion vector.
S2. FINSLER SPACE WITH T-TENSOR OF THE FORM (1.2):

First of all we shall discuss the two dimensional Finsler space \(f^2 \). With reference of Berwald’s frame \((l_i, m_i)\) the angular metric tensor and \(h \) the torsion tensor are given by (Ikeda 1979)

\[
(2.1) \quad h_{\gamma \nu} = m_\gamma, \quad m_\gamma, \quad l, C_{\nu k} = l m_\nu m_j m_k
\]

where \(l \) is the principal scalar.

From (1.1) the (2.1) it follow that T-tensor of \(F^2 \) is given by

\[
LT_{\nu k} = l_\sigma m_\nu m_j m_k
\]

where

\[
(2.2) \quad l_\sigma = L \frac{\partial 1}{\partial y^k} m^k
\]

Since \(m_i = \frac{C_i}{C} \), where \(C_i = C\cdot C_i^0 g^0 \), from (2.1), it follow that \(l = l C \).

Thus, if we write

\[
(2.3) \quad l \alpha_i = \alpha_i l_i + \alpha_i m_i
\]

then from (1.2) and (2.2) it follow that

\[
(2.4) \quad \alpha_i = 0, \quad l_\sigma = L, C^4 + 4 \alpha_i C_i^3.
\]

Hence

Theorem 2.1: In a two dimensional Finsler Space \(F^2 \) the T-tensor \(T_{\nu k} \) can be expressed in the form (1.2) and scalar components \(\alpha_i \) and \(\alpha_2 \) satisfy the relations given in (2.4).

Motsumoto (1973) [6] developed the theory of three dimensional Finsler Space referring to the orthogonal frame \(e_{(i,\alpha)} \), \(\alpha = 1,2,3^\alpha \) with reference to this frame the tensor \(C_{hij} \) is written as
\[(2.5) \quad L_{\alpha}^j = C_{\alpha \beta \gamma} e^\alpha (\omega) i e^\beta (\tau) j \]

where the scalar components \(C_{\alpha \beta \gamma} \) are such that

\[(2.6) \quad C_{\alpha \beta \gamma} = 0, \quad C_{I I}^{22} = H, \quad C_{I 33} = I, \quad C_{333} = J. \]

The scalars \(H, I \) and \(J \) are called main scalars and satisfy the equation

\[(2.7) \quad H + I = L C. \]

The scalar components of \(LT_{\alpha \beta \gamma} \) are given by (Singh et al. 1982) [10].

\[(2.8) \quad LT_{\alpha \beta \gamma} = \left[C_{\alpha \| \alpha} + C_{\| \beta} \delta_{\| \gamma} + C_{\| \beta} \delta_{\| \gamma} + C_{\| \beta} \delta_{\| \gamma} \right] e_{\| \alpha} e_{\| \beta} e_{\| \gamma} \]

where the semicolon denotes the \(v \)-scalar derivative (Motsumoto 1973) [6]. We shall use the following relations which have been obtained by Motsumoto (1973) [6].

\[(2.9) \quad \]

\[\begin{align*}
C_{I I}^{222} &= -J \beta + (H - 2I) \nu \delta \\
C_{I 33} &= J \beta + 3I \nu \delta \\
C_{333} &= J \beta + 3I \nu \delta
\end{align*} \]

where \(\nu \delta \) are the scalar components of \(v \)-connection vector (Motsumoto 1973)

Let \(a_i \) be the scalar components of \(L a_i \)

\[(2.10) \quad L a_i = a_i e^i (\omega) \]

We assume that the \(T \)-tensor of the space \(F^3 \) have the from (1.2) then in view of the relation (2.10), we have

\[(2.11) \quad LT_{\alpha \beta \gamma} = C^3 \left[C L_\rho \delta_{2 \alpha} \delta_{2 \beta} \delta_{2 \gamma} + a_i \delta_{2 \beta} \delta_{2 \gamma} \right] e_{\| \alpha} e_{\| \beta} e_{\| \gamma} \]

\[+ \alpha_{\| \beta} \delta_{2 \alpha} \delta_{2 \gamma} \delta_{2 \delta} + \alpha_{\| \gamma} \delta_{2 \alpha} \delta_{2 \beta} \delta_{2 \delta} \]

\[+ \alpha_{\| \delta} \delta_{2 \alpha} \delta_{2 \beta} \delta_{2 \gamma} \] \(e_{\| \alpha} e_{\| \beta} e_{\| \gamma} e_{\| \delta} \)

Comparing (2.8) with (2.11), we get
of the form (1.2), the v-connection vector vanishes if the scalar component a_3 of L_{ai} vanishes.

Now we shall give examples of n-dimensional Finsler space $(n > 2)$ whose T-tensor is of the form (1.2).

A C^2-like Finsler space is defined as an n ($n > 2$) dimensional Finsler space in which (h) hv-torsion tensor is of the (Motsumoto and Numata 1980)

\begin{equation}
C_{hij} = \frac{1}{C^2} C^h C^i C^j
\end{equation}

Since $C_{hij} \mid _k - C^i \mid _h = 0$, from (2.15), we have

\begin{equation}
C^h C^j \Gamma^i _{ik} + C^h C^i \Gamma^j _{i} - C^h C^j \Gamma^h _{i} - C^k C^i \Gamma^h _{i} = 0
\end{equation}

where

\begin{equation}
\Gamma^i _{ik} = C^i \mid _k - \frac{1}{2C^4} C^2 \mid _k C^i.
\end{equation}

Since $2 C^i \mid _k C^i = C^2 \mid _k$, from (2.17), we have

\begin{equation}
\Gamma^i _{ik} C^i = 0 \text{ and } \Gamma^i _{ik} C^k = \frac{1}{2} \left(C^2 \mid _i - \frac{1}{C^2} C^2 \mid _k C^k C^i \right).
\end{equation}

Contracting (2.16) with g^{ih} and using (2.18) we get

\begin{equation}
C^2 \Gamma^i _{ik} = \alpha C^2 C^i \mid C^k + \frac{1}{2} C^k \mid C^2 \mid _i
\end{equation}

where

\begin{equation}
\alpha C^2 = \Gamma^i _{ik} g^{ik} - \frac{1}{2C^2} C^2 \mid j C^i.
\end{equation}

By virtue of equs. (2.17) and (2.19), we have the following:

Lemma 2.1 — In a C^2-like Finsler space there exists a scalar α such that

\begin{equation}
C^i \mid j = \alpha C^i \mid C^j + \frac{1}{C} \left(C^j \mid C^i + C^j \mid C^i \right).
\end{equation}
\[(2.12) \quad C_{\alpha\beta\gamma\delta} + C_{\beta\gamma\delta} \delta_{1\alpha} + C_{\alpha\gamma\delta} \delta_{1\beta} + C_{\alpha\beta\delta} \delta_{1\gamma} = C^4 \delta_{2\alpha} \delta_{2\beta} \delta_{2\gamma} \delta_{2\delta} + C^3 (\alpha_{\alpha} \delta_{2\beta} \delta_{2\gamma} \delta_{2\delta} + \delta_{2\alpha} \delta_{2\beta} \delta_{2\gamma} \delta_{2\delta}) + \alpha_{\gamma} \delta_{2\alpha} \delta_{2\beta} \delta_{2\delta} + \alpha_{\delta} \delta_{2\alpha} \delta_{2\beta} \delta_{2\gamma} \delta_{2\delta}. \]

Since \(T_{hijk} \) is an indicatory tensor, (1.2) it follow that \(\alpha_{i} y^{i} = 0 \), which in view of (2.10) gives \(\alpha_{1} = 0 \). Thus equations (2.6), (2.9) and (2.12) yield

\[(2.13) \quad \begin{align*}
(\text{a}) & \quad \mathcal{H}_{\rho} + 3J_{\nu^{\rho}} = C^3 (L_{\rho} C + 3 \alpha_{2}) \delta_{2\alpha} + C^3 \alpha_{\delta} \\
(\text{b}) & \quad -J_{\nu^{\delta}} + (H - 2I)_{\nu^{\delta}} = C^3 \alpha_{3} \delta_{2\delta} \\
(\text{c}) & \quad I_{\nu^{\delta}} - 3J_{\nu^{\delta}} = 0 \\
(\text{d}) & \quad J_{\nu^{\delta}} + 3I_{\nu^{\delta}} = 0.
\end{align*} \]

These equations give

\[\alpha_{1} = 0, \quad \alpha_{2} = 1/4 \left(\frac{L}{C^3} \right. C_{i2} \omega - L C_{\rho}, \right) \]

\[(2.14) \quad \alpha_{3} = \frac{L}{C^2} v_{2} \text{ and } v_{3} = 0. \]

Hence we have the following:

Theorem 2.2 — In a three dimensional Finsler space if the \(T \)-tensor is

of the form (1.2) then scalar component \(v_{i} \) of \(\nu \)-connection vector vanishes and

the scalar components \(a_{\alpha} \) of \(L_{ai} \) are given by (2.14).

Since in any three dimensional Finsler space \(v_{i} = 0 \) (Motsumoto 1973)[6].

Theorem 2.2 gives the following:

Theorem 2.3 — In a three dimensional Finsler space with the \(T \)-tensor
Now we are in position to prove the following

Theorem 2.4 — The T-tensor of a C2-like Finsler space is of the form (1.2).

Proof: The v-covariant differentiation of (2.15) gives

\[C_{hij|k} = \frac{1}{C^2} \left(C_{h|k} C_i C_j + C_{i|k} C_h C_j + C_{i|k} C_h C_i \right) \]

\[- \frac{1}{C^3} C^2 |k C_h C_i C_j \]

which in view of Lemma 2.1, gives

\[(2.21) \quad C_{hij|k} = \frac{3\alpha}{C^2} C_h C_i C_j C_k + \frac{1}{C^3} \left(C_{|h} C_i C_j C_k + C_{|i} C_h C_j C_k \right) \]

\[+ C_{|k} C_h C_i C_j + C_{|k} C_h C_i C_j \]

Equation (1.1), (2.15) and (2.21) give the form (1.2), where

\[\rho = \frac{3\alpha L}{C^2}, \quad \alpha = \left(\frac{LC_i}{C^3} + \frac{L_i}{C^3} \right). \]

There are other examples of a Finsler space whose T-tensor is of the form (2.1). If L is a metric function of a two dimensional Finsler space F^2 and L^* is the metric function of $(n - 2)$ dimensional Riemannian space R^{n-2} then the Finsler space $F^2 \times R^{n-2}$ with metric $\sqrt{L + L^*}$ is C2-like Finsler space (Motsumoto & Numata 1980). [9] Hence by virtue of Theorem 2.4 the T-tensor of Finsler space $F^2 \times R^{n-2}$ is of the form (1.2).

§ 3.2 Like Finsler Space

In this section we shall deal the particular form of (1.2) in which a_h is a null vector. Firstly we shall prove the following.

Theorem 3.1 — If the T-tensor T_{hijk} is written in decomposed form
\[T_{hijk} = C_{i} \ T_{ijk} \]

with \(C_{i} \neq 0 \) then Thijk is written in the form

\[(3.1) \quad T_{hijk} = \rho \ C_{i} \ C_{j} \ C_{k} \]

Proof: Since \(T_{hijk} \) is symmetric in all its four indices, \(T_{ijk} \) is a symmetric tensor in all its indices. Since \(C_{i} \) is non-vanishing vector, we may suppose \(C_{1} \neq 0 \), then \(T_{ijk} = T_{i,jk} \) implies that \(C_{1} \ T_{ijk} = C_{1} \ T_{i,jk} \), which gives

\[(3.2) \quad T_{ijk} = C_{i} \ T_{jk} \]

where

\[T_{jk} = T_{i,jk} / C_{1} \]

In view of relation (3.2) the identity \(T_{ijk} = T_{i,jk} \) gives \(C_{1} \ T_{jk} = C_{j} \ T_{ik} \), which gives \(T_{jk} = C_{j} \ T_{i,k} \), where \(T_{k} = T_{ij} / C_{1} \).

Since \(T_{jk} \) is symmetric tensor, we have

\[T_{ik} - T_{ki} = C_{1} \ T_{k} - C_{k} \ T_{1} = 0. \]

Thus

\[T_{k} = \rho \ C_{k} \]

where \(\rho = T_{1} / C_{1} \).

Hence we get eqn. (3.1)

By virtue of eqn. (2.2) we have the following

Theorem 3.2 — In any non-Riemannian Finsler space \(F^{2} \) the \(T \)-tensor is of the form (3.1) where \(\rho = T_{1} / C_{1} \).

In view of this theorem we give the following definition:

Definition — A non-Riemannian Finsler space \(F^{n} \) (\(n > 2 \)) is called T2-like Finsler space, if the \(T \)-tensor \(T_{hijk} \) is written in the form (3.1).

In order to discuss the properties of three-dimensional T2-like Finsler space, we shall use the equation (2.13). Since \(\alpha_{h} \) is a null vector its scalar components \(a_{u} \) vanishes and the equation (2.13) yield.

(a) \[H_{\delta} + 3J_{\nu \delta} = L_{\rho} \ C^{4} \delta_{\nu \delta} \]
(b) $- J_{,\delta} + (H - 2I)_{,\delta} = 0$

(c) $I_{,\delta} - 3J_{\nu,\delta} = 0$

(d) $J_{,\delta} + 3J_{\nu,\delta} = 0$

These equations give

$v_\delta = 0, \; I_{;\delta} = 0, \; J_{;\delta} = 0$

and

(3.4) $H_{,\delta} = L_C^{i} C_{,\delta}^{i}$

Theorem 3.3 — In a three dimensional T2-like Finsler space the v-connection vector vanishes identically and the main scalar I, J are functions of position (co-ordinate) only. The main scalar H satisfies the equation

$H_{,\delta} = L_C^{i} C_{,\delta}^{i}$

where

$$\delta_{2\delta} = \begin{cases}
0 & \text{when } \delta \neq 2 \\
1 & \text{when } \delta = 2
\end{cases}$$

If $\rho = 0$, then from (3.1), we get $T_{,ijk} = 0$ i.e. the Finsler space satisfies T-condition (Motsumoto 1975). [8] Thus by virtue of Theorem 3.3

Corollary 3.1 — The T-condition, for a 3-dimensional non-Riemannian T2-like Finsler space, is equivalent to the fact that the v-connection vector v_j vanishes identically and the main scalar H, I and J are functions of position only.

Now, we shall discuss the properties of n-dimensional $(n > 3)$ T2-like Finsler space.

Contracting (3.1) with g^{ik} and using (1.1), we get

(3.5) $L_C^{i} C_{,ij} = \rho \; C^2 \; C_i C_j - I_i C_j - I_j C_i$
Again contracting (3.5) with C^i and using the relation $2C^i_{[j} C^j = C^2_{[j}$, we get

$$C_{[j} = \lambda C_j + \mu I_j$$

where

$$\lambda = \rho \frac{C^3}{L} \quad \text{and} \quad \mu = -\frac{C}{L}$$

Hence we have the following

Theorem 3.4 - In a T2-like Finsler space relation (3.5) holds and $C_{[j}$ is a linear combination of C_j and I_j.

For the T2-likeness of C2-like Finsler space, we have the following:

Theorem 3.5 - C2-like Finsler space is T2-like if condition (3.5) holds.

Proof: The necessary part of the theorem follows from the theorem (3.4)

Conversely, if (3.5) holds and F^a is C2-like then ν-covariant differentiation of (2.15) gives

$$C_{hijk} = \frac{1}{C^2} \left(C_{hikj} C_j C_i + C_{ijk} C_h C_j + C_{hjk} C_h C_j \right)$$

$$- \frac{1}{C^4} C_{hijk} C_h C_i C_j$$

Contracting (3.5) with C^i and using the relation $2C^i_{[j} C^j = C^2_{[j}$, we get

$$LC^2_{[j} = 2C^2 \left(\rho C^2 C_j - I_j \right).$$

Substituting (2.15), (2.19) and (3.6) and (3.7) in (1.1), we get

$$T_{hijk} = \rho C_h C_i C_j C_k$$
Hence F^n is T2-like Finsler space.

Theorem 3.6 - A C2-like Finsler space is T2-like if $C_j|_k$ is a linear combination of I_k and C_k.

Proof: The necessary part follows from Theorem 3.4.

Conversely, if $C_j|_i$ is a linear combination of C_i and I_j, then $C_j|_i = \lambda C_j + \mu I_j$ for some scalar λ and μ.

Since C is positively homogeneous of degree -1 in y^i contracting the above equation with y^i we get $\mu = \frac{C}{L}$. Thus we have

\[(3.8) \quad C_j|_i - \lambda C_j = \frac{C}{L} I_i. \]

Substituting (2.15), (2.20), (3.6) and (3.8) in (1.1), we get

\[T_{hijk} = \rho C_h C_i C_j C_k \]

where

\[\rho = \frac{3L\alpha}{C^2} + \frac{4\alpha L}{C^3} \]

Theorem 3.7 - If a T2-like Finsler space is e-reducible then it satisfies T-condition.

Proof: A C-reducible Finsler space F^n is a non-Riemannian Finsler space in which (h) hv-torsion tensor is of the form (Motsumoto 1972 b)\[5\]

\[C_{hik} = \frac{1}{(n+1)} \left(C_h h_{ij} + C_i h_{ki} + C_j h_{ki} \right). \]

In a C-reducible Finsler space there exists scalar M such that (Motsumoto 1974) \[7\]

\[(3.9) \quad T_{hijk} = M (h_{ij} h_{hk} + h_{hi} h_{ik} + h_{hj} h_{hk}). \]
By virtue of eqns. (3.1) and (3.9), we get

\[M (h_{ij} h_{ik} + h_{ji} h_{jk} + h_{ki} h_{ik}) = \rho C_i C_j C_k C_k \]

which after contraction with \(g_{hk} \), gives

\[M (n + 1) h_{ij} = \rho C_i C_j \]

Since the rank of \(h_{ij} \) is \((n - 1)\) and the rank of \(C_i C_j \) is 1, therefore for \(n > 3 \), eqn. (3.10) is valid only when \(\rho = M = 0 \).

This proves the theorem.

The v-curvature tensor \(S_{hijk} \) is given by

\[S_{hijk} = C_{hkr} C_{ij}^r - C_{hjr} C_{ik}^r. \]

The v-covariant differentiation of above equation and the application of equation (1.1) and (3.1), give

\[\begin{align*}
L S_{hijk} \mid^1 &= (C_{ij} C_h C_k + C_{hijk} C_i C_j - C_h C_j - C_{hj} C_i C_k) C_i \\
- 2 l_i S_{hijk} - l_i S_{lijk} - l_i S_{hijk} - l_j S_{hijk} - l_k S_{hijk}
\end{align*} \]

where the dot denotes the contraction with \(C^r \). The indicatorised tensor \(T_{hijkl} \) of \(S_{hijk} \mid^1 \) is defined as

\[T_{hijkl} = L S_{hijk} \mid^1 + 2 l_i S_{hijk} + l_h S_{lijk} + l_i S_{hijk} + l_j S_{hijk} + l_k S_{hijkl}. \]

Equation (3.11) gives the following:

Theorem 3.8 — The indicatorised tensor \(T_{hijk} \) of \(L S_{hijk} \mid^1 \) for a T2-like Finsler space is of the form.

\[T_{hijkl} = (C_{ij} C_h C_k + C_{hkk} C_i C_j - C_{ik} C_h C_j - C_{hj} C_i C_k) C_l. \]
Contracting (3.11) with g^{hk} we get

\[(3.12) \quad L S_{hij} = \rho [C^2 (C_{ij} + C_i C_j) - (C_i \cdots C_{hijk} C_j \cdots C_i) C_j \cdots \]

\[-2L_{ij} S_{il} - L_{ij} S_{il} - L_{ij} S_{il} \]

where

\[S_{ij} = S_{h ij} g^{hk}. \]

Again contracting (a) with g^{ij} we get

\[(3.13) \quad L S_{ij} = 2\rho (C^4 - C_i) C_i - 2L_{ij} S \]

where

\[S = S_{ij} g^{ij}. \]

This gives the following

Theorem 3.9: In a T2-like Finsler space F^n if the v-scalar S vanishes identically and $C^4 \neq C$., then F^n satisfies T-condition.

An S3-like Finsler space characterised by the relation (Fukui and Yamada 1979) [1].

\[(3.14) \quad S_{hijk} = \frac{S}{(n-1)(n-2)} (h_{hk} h_{ij} - h_{ij} h_{ik}) \]

For an S3-like Finsler space the function $L^2 S$ is a function of co-ordinates only (Fukui and Yamada 1979) [1]. Hence $(L^2 S)_{ij} = 0$. This result and (3.12) give

\[\rho (C^4 C \cdots C_i = 0. \]

Therefore, we get:

Theorem 3.10: If a T2-like finsler space F^n is S3-like and $C^4 \neq C$, then F^n satisfies T-condition.

Since in every three dimensional Finsler space (3.13) holds, therefore, we get
Corollary 3.2: A T2-like 3-dimensional Finsler space with $C^1 \subset C^2$ is a Finsler space satisfying T-condition.

84. REFERENCES: