TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>I-II</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>ABBREVIATIONS</td>
<td>IV</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>VI-VIII</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>1.1 General features of Staphylococcus</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Disease conditions caused by Staphylococcus aureus</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1.3 Emergence of MRSA and MDR Objectives</td>
<td>3-5</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>6-32</td>
</tr>
<tr>
<td></td>
<td>2.1 General Background</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2.2 Genetic organization</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td>2.3 Clinical manifestation of S. aureus</td>
<td>9-10</td>
</tr>
<tr>
<td></td>
<td>2.4 Pathogenesis and virulence factors of S. aureus</td>
<td>10-14</td>
</tr>
<tr>
<td></td>
<td>2.5 Resistance of S. aureus to antimicrobial agents</td>
<td>14-15</td>
</tr>
<tr>
<td></td>
<td>2.5.1 Mechanism of action of β-lactam antibiotics</td>
<td>15-16</td>
</tr>
<tr>
<td></td>
<td>2.5.2 Quinolone resistance</td>
<td>16-17</td>
</tr>
<tr>
<td></td>
<td>2.5.3 Vancomycin resistance</td>
<td>17-18</td>
</tr>
<tr>
<td></td>
<td>2.6 Epidemiology</td>
<td>18-22</td>
</tr>
<tr>
<td></td>
<td>2.6.1 Methicillin resistant S. aureus (MRSA)</td>
<td>18-20</td>
</tr>
<tr>
<td></td>
<td>2.6.1.1 HA-MRSA</td>
<td>21</td>
</tr>
</tbody>
</table>
2.6.1.2 CA-MRSA 21-22

2.7 Bacteriophage typing 23

2.8 Molecular diagnosis and typing of *S. aureus* strains 23-29

 2.8.1 Genotyping method 24-27

 2.8.2 PCR- based typing 27-28

 2.8.3 Direct DNA sequence analysis 28-30

2.9 Prevention and control of *S. aureus* infections 30-32

 2.9.1 Treatment of *S. aureus* infections with antibiotics 30

 2.9.2 Alternative therapies for the treatment of *S. aureus* infections 30

 2.9.2.1 Antibacterial compounds derived from bacteria 30

 2.9.2.2 Plants derived antibacterial compounds 31

 2.9.2.3 Antibacterial compounds derived from animals 31

 2.9.3 Anti virulence therapy 31-32

 2.9.4 Vaccines 32

3. MATERIALS AND METHODS 33-39

3.1 *S. aureus* isolates 33

 3.1.1 Clinical isolates of *S. aureus* 33

 3.1.2 Reference strains of *S. aureus* 33

 3.2 Preservation of isolates 33

 3.3 *In vitro* antibiotic culture sensitivity assay 33

 3.3.1 Standard antibiotic disc used in the assay 33

 3.3.2 Procedure of sensitivity assay 34

 3.4 Extraction of Genomic DNAs of MRSA and MSSA Strains 34
3.4.1 DNA extraction by phenol: chloroform

3.4.2 Extraction and purification of genomic DNA of MRSA and MSSA isolates with Axygen Kit.

3.5 Amplification of virulence (coa and spa) genes and toxic shock syndrome toxin gene (tst) of MRSA and MSSA isolates

3.6 Electrophoresis of amplicons of coa, spa and tst genes

3.7 Restriction Enzyme Analysis of amplicons of coa and spa genes

3.7.1 Coagulase (coa) amplicon

3.7.2 Staphylococcal protein A (spa) gene amplicon

3.8 Nucleotide sequencing of the amplicons of coa and spa genes of MRSA and MSSA

3.9 Bacteriophage typing of MSSA isolates

4. RESULTS

4.1 In vitro antibiotic culture sensitivity assay and screening of MDR strains

4.2 Visualization of extraction of genomic DNAs extracted from MRSA and MSSA isolates

4.3 PCR Amplification of coa gene segments of MRSA and MSSA isolates

4.4 RE analysis of coa gene amplicon of MRSA isolates

4.5 Nucleotide sequencing of amplicons of coa gene of MRSA isolates

4.5.1 Isolate No.64 (blood origin)

4.5.2 Isolate No.128 (urine origin)

4.5.3 Isolate No.97 (pus origin)

4.5.4 Alignment of nucleotide sequences of coagulase (coa) gene of MRSA isolates
4.6 Nucleotide sequencing of amplicons of \textit{coa} gene of MSSA isolates

4.6.1 Isolate no. 96 (blood origin)

4.6.2 Isolate no. 81 (urine origin)

4.6.3 Isolate no. 75 (pus origin)

4.6.4 Alignment of nucleotide sequences of \textit{coa} gene of MSSA isolates

4.7 PCR Amplification of \textit{spa} gene (x-region) of MRSA and MSSA isolates

4.8 RE analysis of amplicon of \textit{spa} gene (x-region) of MRSA isolates

4.9 Nucleotide sequencing of amplicons of \textit{spa} gene (x-region) of MRSA isolates

4.9.1 Isolate no. 64 (blood origin)

4.9.2 Isolate no. 128 (urine origin)

4.9.3 Isolate no. 97 (pus origin)

4.9.4 Alignment of nucleotide sequences of \textit{spa} gene (x-region) of MRSA isolates

4.10 Nucleotide sequencing of amplicon of \textit{spa} gene (x-region) of MSSA

4.10.1 Isolate no. 96 (blood origin)

4.10.2 Isolate no. 81 (urine origin)

4.10.3 Isolate no. 75 (pus origin)

4.10.4 Alignment of nucleotide sequences of \textit{spa} gene (x-region) of MSSA isolates

4.10.5 Tandem repeats of \textit{spa} gene (x-region) of MRSA and MSSA isolates

4.11 PCR Amplification of \textit{tst} gene in MRSA isolates

4.12 Predicted amino acid sequences of \textit{coa} gene of MRSA and MSSA isolates
4.12.1 Amino acid sequences of MRSA (Isolate 97-pus) 45
4.12.2 Amino acid sequences of MRSA (Isolate 128-urine) 46
4.12.3 Amino acid sequences of MRSA (Isolate 64-blood) 46
4.12.4 Amino acid sequences of MSSA (Isolate 75-pus) 46
4.12.5 Amino acid sequences of MSSA (Isolate 81-urine) 46
4.12.6 Amino acid sequences of MSSA (Isolate 96-blood) 46
4.12.7 Standard coa positive S. aureus isolate (Stp-12) 46
4.12.8 Comparative analysis of amino acid sequences of coa gene of MRSA and MSSA isolates with standard coa positive isolate Stp-12. 46-47

4.13 Predicted amino acid sequences of x-region of spa gene of MRSA and MSSA isolates 47
4.13.1 Amino acid sequences of MRSA (Isolate 97-pus) 47
4.13.2 Amino acid sequences of MRSA (Isolate 128-urine) 47
4.13.3 Amino acid sequences of MRSA (Isolate 64-blood) 47
4.13.4 Amino acid sequences of MSSA (Isolate 72-pus) 47
4.13.5 Amino acid sequences of MSSA (Isolate 81-urine) 47
4.13.6 Amino acid sequences of MSSA (Isolate 96-blood) 47
4.13.7 Standard spa positive isolate 47
4.13.8 Comparative analysis of the predicted amino acid sequences of spa gene amplicons of MRSA and MSSA isolates with standard spa positive isolate 48

4.14 Bacteriophage Typing of MSSA strains 48
4.14.1 In vitro susceptibility of MSSA strains to different antibiotics and their correlation to phage groups.

5. DISCUSSION 85-96
6. SUMMARY AND CONCLUSIONS 97-98
7. REFERENCES 99-121
8. LIST OF PUBLICATIONS 122

ANNEXTURE- I

PUBLICATIONS