CHAPTER 3

GENERALIZED α b-CLOSED SETS IN TOPOLOGICAL SPACES

3.1 INTRODUCTION

In 1970, Levine introduced generalized closed sets in topology. Andrijevic (1996) introduced generalized open sets in a topological space called, b-open sets. These types of sets are discussed by Ekici and Caldas (2004) under the name γ-open sets. The class of b-open set is contained in the class of semi-pre-open sets and contains all semi-open sets and pre-open sets. Since the advent of these notions, several researches have been done which produced interesting results.

The aim of the present chapter is to continue the study of generalized b-closed sets. The notion of generalized α b-closed sets as introduced and its various characterizations are investigated. Also, $T_{g\alpha b}$-spaces has been introduced in topological spaces and its nature, properties, theorem discussed with examples.

3.2 GENERALIZED α b-CLOSED SETS

The present section gives the definition of generalized α b-closed set and investigates some of its properties.
Definition 3.2.1: A subset A of a topological space X is called generalized αb-closed (briefly $g \alpha b$-closed) set, if $\text{bcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is an α-open. The collection of all the $g \alpha b$-closed sets in X are denoted by $g \alpha b$-C(X).

Theorem 3.2.2: Let A be a $g \alpha b$-closed subset of (X, τ), $\text{bcl}(A) - A$ then does not contain any non-empty α-closed sets.

Proof: Necessary: Suppose F is a non-empty α-closed subset of X such that $F \subseteq \text{bcl}(A) - A$. Now $F \subseteq \text{bcl}(A) - A \Rightarrow F \subseteq \text{bcl}(A) \cap A^c$,

$\Rightarrow F \subseteq \text{bcl}(A)$ and $F \subseteq A^c$

$\Rightarrow A \subseteq F^c$.

Since F^c is α-open and A is $g \alpha b$-closed, $\text{bcl}(A) \subseteq F^c \Rightarrow F \subseteq (\text{bcl}(A))^c$. Thus, $F \subseteq (\text{bcl}(A)) \cap (\text{bcl}(A))^c = \phi$. That is $F = \phi$. Implies $\text{bcl}(A) - A = \phi$ contains no non-empty α-closed set.

Sufficient: Let $A \subseteq U$ and U is an α-open, then $\text{bcl}(A) \subseteq U$. Suppose that $\text{bcl}(A)$ does not contain in U, then $\text{bcl}(A) \cap U^c$ is a non-α-empty closed set of $\text{bcl}(A) - A$, which is a contradiction. Therefore, $\text{bcl}(A) \subseteq U$. Hence, A is $g \alpha b$-closed.

Theorem 3.2.3: Let A be a $g \alpha b$-closed set, then A is gb-closed if and only if $\text{bcl}(A) - A = \phi$ is closed.

Proof: Necessary: Assume that A is $g \alpha b$-closed. Since $\text{bcl}(A) = A$, $\text{bcl}(A) - A = \phi$ is gb-closed and hence closed.

Sufficient: Conversely, assume that $\text{bcl}(A) - A$ be closed. By the above theorem, $\text{bcl}(A) - A$ does not contain any non-empty α-closed set. That is $\text{bcl}(A) - A = \phi$, so $A = \text{bcl}(A)$. Therefore, A is gb-closed.
Theorem 3.2.4: Let A be a $g\alpha$ b-closed and suppose that F is an α-open, then $A \cap F$ is $g\alpha$ b-closed.

Proof: To show that $A \cap F$ is $g\alpha$ b-closed one has to show that $\text{bcl}(A \cap F) \subseteq U$, where U is an α-open and $A \cap F \subseteq U$. Now $\text{cl}(\text{int}(\text{cl}(A \cap F))) \subseteq A \cap F$, $\text{cl}(\text{int}(\text{cl}(A \cap F))) \subseteq A \cap F \subseteq U$. Implies that $\text{cl}(\text{int}(\text{cl}(A \cap F))) \subseteq U$. Thus, $\text{cl}(\text{int}(A \cap F)) \subseteq U$ and $\text{int}(\text{cl}(A \cap F)) \subseteq U$, as U is an α-open. Now, $\text{cl}(\text{int}(A \cap F)) \cup \text{int}(\text{cl}(A \cap F)) \subseteq U$, that is $\text{bcl}(A \cap F) \subseteq U$. Hence, proved.

Theorem 3.2.5: Suppose that $B \subseteq A \subseteq X$, B is $g\alpha$ b-closed set relative to A and A is $g\alpha$ b-closed set in X, then B is $g\alpha$ b-closed set relative to X.

Proof: Let $B \subseteq U$ and U be an α-open set in X. Given that $B \subseteq A \subseteq X$, then $B \subseteq A$ and $B \subseteq U$, that is $B \subseteq A \cap U$. Since B is $g\alpha$ b-closed set relative to A, $\text{bcl}(B) \subseteq A \cap U \subseteq U$. Therefore, $A \cup (\text{bcl}(B)) \subseteq U$.

Now $(A \cup (\text{bcl}(B))) \cap (\text{bcl}(B))^C \subseteq U \cap (\text{bcl}(B))^C$

$\Rightarrow (A \cap (\text{bcl}(B))^C) \cup ((\text{bcl}(B)) \cap (\text{bcl}(B))^C) \subseteq U \cap (\text{bcl}(B))^C$

$\Rightarrow (A \cap (\text{bcl}(B))^C) \subseteq U \cap (\text{bcl}(B))^C$

Now A is $g\alpha$ b-closed set and $B \subseteq A$

$\text{bcl}(B) \subseteq \text{bcl}(A) \subseteq U \cap (\text{bcl}(B))^C$

$\Rightarrow \text{bcl}(B) \subseteq U \cap (\text{bcl}(B))^C$

$\Rightarrow \text{bcl}(B) \subseteq U$, but not contain in $(\text{bcl}(B))^C$

$\Rightarrow B$ is $g\alpha$ b-closed set relative to X.

Theorem 3.2.6: If a subset A is $g\alpha$ b-closed and $A \subseteq B \subseteq \text{bcl}(A)$, then B is $g\alpha$ b-closed set.
Proof: Let $B \subseteq U$, U is an α-open, then $A \subseteq B$ and $A \subseteq U$. Since A is $g\alpha$ b-closed, $\text{bcl}(A) \subseteq U$, but $B \subseteq \text{bcl}(A)$, implies $\text{bcl}(B) \subseteq \text{bcl}(A)$. Therefore, $\text{bcl}(B) \subseteq \text{bcl}(A) \subseteq U$. Thus $\text{bcl}(B) \subseteq U$ and U is an α-open. Hence, B is $g\alpha$ b-closed.

Theorem 3.2.7: Let $A \subseteq Y \subseteq X$ and suppose that A is $g\alpha$ b-closed set in X, A is then $g\alpha$ b-closed set relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is $g\alpha$ b-closed set in X, to show that A is $g\alpha$ b-closed set relative to Y. Let $A \subseteq Y \cap U$, where U is an α-open in X, then $\text{bcl}(A) \subseteq U$ and $\text{bcl}(A) \cap Y \subseteq Y \cap U$. Therefore, $\text{bcl}(A) \cap Y$ is the b-closure of A in Y. Thus, A is $g\alpha$ b-closed set relative to Y.

Theorem 3.2.8: The intersection of any two subsets of $g\alpha$ b-closed sets in X is $g\alpha$ b-closed.

Proof: Let A and B be the subsets of $g\alpha$ b-closed sets, $A \subseteq U$ and $\text{bcl}(A) \subseteq U$, $B \subseteq U$ and $\text{bcl}(B) \subseteq U$, U is an α-open. Therefore, $A \cap B \subseteq A$ and $\text{bcl}(A \cap B) \subseteq \text{bcl}(A)$, $A \cap B \subseteq B$ and $\text{bcl}(A \cap B) \subseteq \text{bcl}(B)$. Hence, $\text{bcl}(A \cap B) \subseteq U$ and U is an α-open. Thus, $A \cap B$ is $g\alpha$ b-closed set.

Remark 3.2.9: If the subsets A and B are $g\alpha$ b-closed sets, their union need not be $g\alpha$ b-closed set.

Example 3.2.10: Let $X = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. In this topological space (X, τ), the subsets $\{a\}$ and $\{c\}$ are $g\alpha$ b-closed, but their union $\{a, c\}$ is not $g\alpha$ b-closed.

Theorem 3.2.11: If a subset A of a topological space X is nowhere dense, it is then $g\alpha$ b-closed.

Proof: Suppose a set A is nowhere dense, it is then $\text{int}(\text{cl}(A)) = \emptyset$. It is obvious that $\text{bcl}(A) \subseteq \text{cl}(A)$ and also $\text{bcl}(A) \subseteq \text{int}(\text{bcl}(A)) \subseteq \text{int}(\text{cl}(A))$.

Therefore \(\text{int} (\text{cl}(A)) = \phi \), which implies \(\text{bcl}(A) = \phi \). Thus, \(A \) is \(\alpha b \)-closed in \(X \).

Remark 3.2.12: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.13: Consider \(X = \{a, b, c\} \), with a topology \(\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\} \). In this topological space \((X, \tau) \), the subset \(\{a\} \) is \(\alpha b \)-closed but not nowhere dense.

Theorem 3.2.14: If a subset \(A \) of a topological space \(X \) is \(\alpha b \)-closed, it is then \(gb \)-closed.

Proof: Suppose \(A \) is a \(\alpha b \)-closed set in \(X \). Since every open set is \(\alpha \)-open sets, \(U \) is an open set. Therefore, \(\text{bcl}(A) \subseteq U \) and \(U \) is an open. Thus, \(A \) is \(gb \)-closed.

Remark 3.2.15: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.16: Consider \(X = \{a, b, c\} \) with topology \(\tau = \{X, \phi, \{a\}, \{a,c\}\} \). In this topological space \((X, \tau) \), the subset \(\{a, b\} \) is \(gb \)-closed but not \(\alpha b \)-closed.

Theorem 3.2.17: If a subset \(A \) of a topological space \(X \) is \(\alpha b \)-closed, it is then \(gp \)-closed.

Proof: Suppose \(A \) is a \(\alpha b \)-closed set. Since every pre-closed set is \(b \)-closed, \(\text{bcl}(A) \subseteq \text{pcl}(A) \subseteq U \). Therefore, \(\text{pcl}(A) \subseteq U \) and \(U \) is open. Thus, \(A \) is \(gp \)-closed set in \(X \).

Remark 3.2.18: The converse of the above theorem need not be true as seen from the following example.
Example 3.2.19: Consider $X = \{a, b, c\}$ with topology $\tau = \{X, \emptyset, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is gp-closed but not $g\alpha b$-closed.

Theorem 3.2.20: If a subset A of a topological space X is $g\alpha$-closed, it is then $g\alpha b$-closed.

Proof: Let A be a $g\alpha$-closed. Now $bcl(A) \subseteq cl_\alpha(A) \subseteq U$, implies that $bcl(A) \subseteq U$ and U is an α-open. Thus, A is $g\alpha b$-closed.

Remark 3.2.21: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.22: Let $X = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g\alpha b$-closed but not $g\alpha$-closed.

Theorem 3.2.23: If a subset A of a topological space X is αg-closed, it is then $g\alpha b$-closed.

Proof: Let A be αg-closed. Since every open sets are α-open sets and also $bcl(A) \subseteq cl_\alpha(A) \subseteq U$. Therefore, $bcl(A) \subseteq U$ and U is an α-open. Thus, A is $g\alpha b$-closed.

Remark 3.2.24: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.25: Let $X = \{a, b, c\}$ with $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g\alpha b$-closed, but not αg-closed.

Theorem 3.2.26: If a subset A of a topological space X is $g\alpha b$-closed, it is then gs-closed.

Proof: Let A be a $g\alpha b$-closed and $A \subseteq U$. Since every semi-closed set is b-closed set, $bcl(A) \subseteq scl(A) \subseteq U$. Therefore, $scl(A) \subseteq U$ and U is an open. Thus, A is gs-closed.
Remark 3.2.27: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.28: Let \(X = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}\} \). In this topological space \((X, \tau) \), the subset \(\{a, b\} \) is gs-closed, but not g \(\alpha \) b-closed set.

Theorem 3.2.29: If a subset \(A \) of a topological space \(X \) is sg-closed, it is then g \(\alpha \) b-closed.

Proof: Let \(A \) be a sg-closed, \(\text{scl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-open. Since every semi-closed set is b-closed, \(\text{bcl}(A) \subseteq U \), \(A \subseteq U \) and \(U \) is an \(\alpha \)-open. Therefore \(A \) is g \(\alpha \) b-closed.

Remark 3.2.30: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.31: Let \(X = \{a, b, c\} \) with \(\tau = \{X, \phi, \{b, c\}\} \). In this topological space \((X, \tau) \), the subset \(\{b\} \) is g \(\alpha \) b-closed, but not sg-closed.

Theorem 3.2.32: If a subset \(A \) of a topological space \(X \) is g \(\alpha \) b-closed, it is then gpr-closed.

Proof: Let \(A \) be a g \(\alpha \) b-closed. Since every pre-closed set is b-closed, \(\text{bcl}(A) \subseteq \text{pcl}(A) \subseteq U \). Therefore, \(\text{pcl}(A) \subseteq U \) and \(U \) is regular open. Thus, \(A \) is gpr-closed.

Remark 3.2.33: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.34: Let \(X = \{a, b, c\} \) with \(\tau = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \). In this topological space \((X, \tau) \), the subset \(\{a\} \) is gpr-closed but not g \(\alpha \) b-closed.

Theorem 3.2.35: A subset \(A \) of a topological space \(X \) is swg-closed, it is then g \(\alpha \) b-closed.
Proof: Let A be a swg-closed set in X. Since every semi-closed set is b-closed. Therefore $\text{bcl}(A) \subseteq U$ and U is an α-open. Thus, A is $g\alpha$ b-closed.

Remark 3.2.36: The converse of the above theorem need not be true as seen from the following example.

Example 3.2.37: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g\alpha$ b-closed, but which is not swg-closed.

Remark 3.2.38: The following examples show that $g\alpha$ b-closed and g-closed sets are independent.

Example 3.2.39: Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is g-closed, but not $g\alpha$ b-closed set.

Example 3.2.40: Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g\alpha$ b-closed, but not g-closed.

Remark 3.2.41: The following examples show that $g\alpha$ b-closed and wg-closed sets are independent.

Example 3.2.42: Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}\}$. In this topological space (X, τ), the subset $\{a, b\}$ is wg-closed, but not $g\alpha$ b-closed set.

Example 3.2.43: Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g\alpha$ b-closed, but not wg-closed set.
Remark 3.2.44: Figure 3.1 gives the implication relationship of \(g \alpha \) b-closed sets based on the above results.

\[
\begin{align*}
\text{swg-closed set} & \quad \text{ag-closed set} & \quad \text{gs-closed set} \\
\text{g-closed set} & \quad \text{\(g \alpha \) b-closed set} & \quad \text{wg-closed set} \\
\text{\(g \alpha \) -closed set} & \quad \text{gb-closed set} \\
\text{sg-closed set} & \quad \text{gp-closed set} & \quad \text{gpr-closed set}
\end{align*}
\]

\textbf{Figure 3.1 Implication of \(g \alpha \) b- closed set}

where \(\rightarrow \) represent A implies B.

\(\rightarrow \) represent A does not implies B.

\(\leftrightarrow \) represent B does not implies A.

3.3 GENERALIZED \(\alpha \) b-OPEN SETS AND GENERALIZED \(\alpha \) b-NEIGHBOURHOODS

The present section introduces the concept of generalized \(\alpha \) b-open sets in topological space and studies some of their properties.

\textbf{Definition 3.3.1:} A subset \(A \) of a topological space \(X \) is called a generalized \(\alpha \) b-open (briefly g \(\alpha \) b-open) set, if its complement \(A^c \) is g \(\alpha \) b-closed.

The collection of all the g \(\alpha \) b-open sets in \(X \) is denoted by g \(\alpha \) b-O(\(X \)).

\textbf{Theorem 3.3.2:} If a subset \(A \) of a topological space \(X \) is g \(\alpha \) b-open if and only if \(U \subseteq \text{bint}(A) \), whenever \(U \) is an \(\alpha \)-closed and \(U \subseteq A \).
Proof: Assume that A is $g\alpha$-b-open, then A^c is $g\alpha$-b-closed. Let U be α-closed set in X contained in A, U^c is then α-open in X and containing A^c. Since A^c is $g\alpha$-b-closed, $\text{bcl}(A^c) \subseteq U^c$. Therefore, $U \subseteq \text{bint}(A)$.

Conversely, $U \subseteq \text{bint}(A)$ whenever $U \subseteq A$ and U is an α-closed in X. Let G be an α-open set containing A^c, then $G^c \subseteq \text{bint}(A)$ taking complement on both sides $\text{bcl}(A^c) \subseteq G$, hence A^c is $g\alpha$-b-closed. Therefore, A is $g\alpha$-b-open.

Definition 3.3.3: A subset N of a topological space X is said to be $g\alpha$-b-neighbourhood of $x \in X$, if there exists a $g\alpha$-b-open set G such that $x \in G \subset N$.

Definition 3.3.4: A subset N of a topological space X is called a $g\alpha$-b-neighbourhood of $A \subset X$, if there exists a $g\alpha$-b-open set G such that $A \subset G \subset N$.

Remark 3.3.5: A $g\alpha$-b-neighbourhood N of $x \in X$ need not be $g\alpha$-b-open in X, as seen from the following examples.

Example 3.3.6: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. In this topological space (X, τ), $g\alpha$-b-$O(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, c, d\}\}$. The set $\{b, c\}$ is not $g\alpha$-b-open, but it is $g\alpha$-b-neighbourhood of $\{b\}$, as $\{b\}$ is $g\alpha$-b-open set such that $b \in \{b\} \subset \{b, c\}$.

Theorem 3.3.7: Every neighbourhood N of $x \in X$ is $g\alpha$-b-neighbourhood of X.

Proof: Let N be the neighbourhood of a point $x \in X$, to prove that N is a $g\alpha$-b-neighbourhood of x. By definition of neighbourhood, there exists an open set G such that $x \in G \subset N$. As every open set G is $g\alpha$-b-open set, such that $x \in G \subset N$. Hence, N is $g\alpha$-b-neighbourhood of x.

Remark 3.3.8: In general, \(g\alpha \-b\)-neighbourhood \(N \) of \(x \in X \) need not be a neighbourhood of \(x \) in \(X \), as seen from the following example.

Example 3.3.9: Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\} \). In this topological space \((X, \tau)\), \(g\alpha \-b\-O(X) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}\} \). The set \(\{b, d\} \) is the neighbourhood of \(\{b\} \), since \(\{b\} \) is \(g\alpha \-b\)-open set, such that \(b \in \{b\} \subset \{b, d\} \). However, the set \(\{b, d\} \) is not a neighbourhood of the point \(\{b\} \) such that \(b \in G \subset \{b, d\} \).

Theorem 3.3.10: If a subset \(N \) of a space \(X \) is \(g\alpha \-b\)-closed, then \(N \) is \(g\alpha \-b\)-neighbourhood of each of its points.

Proof: Suppose \(N \) is \(g\alpha \-b\)-closed subset of topological space \((X, \tau)\). Let \(x \in N \), it can be claimed that \(N \) is \(g\alpha \-b\)-neighbourhood of \(x \). \(N \) is \(g\alpha \-b\)-closed set such that \(x \in N \subset N \), since \(x \) is an arbitrary point of \(N \) it follows that \(N \) is \(g\alpha \-b\)-neighbourhood of each of its points.

Remark 3.3.11: The converse of the above theorem need not be true as seen from the following example.

Example 3.3.12: Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{X, \emptyset, \{a, b\}\} \). In this topological space \((X, \tau)\), \(g\alpha \-b\-cl(X) = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\} \) the set \(\{a, b, d\} \) is the neighbourhood of \(\{a, b\} \) and \(\{b, d\} \), since \(a, b \in \{a, b\} \subset \{a, b, d\} \) and \(b, d \in \{b, d\} \subset \{a, b, d\} \) that is \(\{a, b, d\} \) is the \(g\alpha \-b\)-neighbourhood of each of its points. However, \(\{a, b, d\} \) is not \(g\alpha \-b\)-closed in \(X \).

3.4 GENERALIZED \(\alpha \-b\- SPACES \)

This section introduces a new space \(T_{gab} \)-spaces in topology and studies some of their properties.
Definition 3.4.1: A topological space X is said to be T_{gab}-space, if every $g \alpha b$-closed subset of X is an α-closed in X.

Theorem 3.4.2: Every T_{gab}-space is $T_{1/2}$-space.

Proof: It is assumed that (X, τ) is a T_{gab}-space. Let A be a $g \alpha b$-closed. As every $g \alpha b$-closed set is g-closed and X is T_{gab}-space, A is closed. Therefore, X is $T_{1/2}$-space.

Remark 3.4.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.4: Let $X = \{a, b, c\}$ with $\tau = \{x, \phi, \{a\}, \{c\}, \{a, c\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g \alpha b$-closed, but not α-closed.

Theorem 3.4.5: Every semi-$T_{1/2}$-space is T_{gab}-space.

Proof: It is assumed that (X, τ) is a semi-$T_{1/2}$-space. Let A be a sg-closed. As every sg-closed set is $g \alpha b$-closed and X is semi-$T_{1/2}$-space, A is an α-closed. Therefore, X is T_{gab}-space.

Remark 3.4.6: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.7: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a, b\}\}$. In this topological space (X, τ), the subset $\{a, c\}$ is sg-closed, but not semi-closed.
Theorem 3.4.8: Every T_{gab}-space is pre-$T_{1/2}$-space.

Proof: It is assumed that (X, τ) is a T_{gab}-space. Let A be a $g \alpha b$-closed. As every $g \alpha b$-closed set is gp-closed set and X is T_{gab}-space, A is pre-closed. Therefore, X is pre-$T_{1/2}$-space.

Remark 3.4.9: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.10: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b\},\{a, b\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g \alpha b$-closed, but not α-closed.

Theorem 3.4.11: Every αT_d-space is T_{gab}-space.

Proof: It is assumed that (X, τ) is a αT_d-space. Let A be an αg-closed. Every αg-closed set is $g \alpha b$-closed and X is αT_d-space, A is an α-closed. Therefore, X is T_{gab}-space.

Remark 3.4.12: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.13: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{c\}, \{b\}, \{a, b\}\}$. In this topological space (X, τ), the subset $\{b\}$ is αg-closed, but not g-closed.

Theorem 3.4.14: Every T_{gab}-space is pre-regular-$T_{1/2}$-space.

Proof: It is assumed that (X, τ) is a T_{gab}-space. Let A be a $g \alpha b$-closed. Every $g \alpha b$-closed set is gpr-closed set and X is T_{gab}-space, A is pre-closed. Therefore, X is pre-regular-$T_{1/2}$-space.
Remark 3.4.15: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.16: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. In this topological space (X, τ), the subset $\{c\}$ is $g\alpha$ b-closed, but not α-closed.

Theorem 3.4.17: Every T_{ag}-space is T_{gab}-space.

Proof: It is assumed that (X, τ) is a T_{ag}-space. Let A be a α g-closed. Every α g-closed set is $g\alpha$ b-closed and X is T_{ag}-space, A is an α-closed. Therefore, X is T_{gab}-space.

Remark 3.4.18: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.19: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{b\}, \{a, b\}\}$. In this topological space (X, τ), the subset $\{b, c\}$ is α g-closed, but not $g\alpha$-closed.

Theorem 3.4.20: Every T_{gab}-space is T_{gs}-space.

Proof: It is assumed that (X, τ) is a T_{gab}-space. Let A be a $g\alpha$ b-closed. As every $g\alpha$ b-closed set is gs-closed and X is T_{gab}-space, A is sg -closed. Therefore, X is T_{gs}-space.

Remark 3.4.21: The converse of the above theorem need not be true as seen from the following example.

Example 3.4.22: Let $X = \{a, b, c\}$ with $\tau = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$. In this topological space (X, τ), the subset $\{a\}$ is $g\alpha$ b-closed, but not α-closed.
Remark 3.4.23: By the above theorem and results the following relationship has been obtained.

![Diagram showing relationships between different types of spaces](image)

Figure 3.2 Separation axioms on \(T_{gab} \) - Spaces

where
- \(\rightarrow \) B represent A implies B.
- \(\nrightarrow \) B represent A does not implies B.
- \(\iff \) B represent B does not implies A.

Conclusion 3.4.24: The present chapter has introduced a new concept called generalized \(\alpha \) b-closed set in topological spaces. It also analyzed some of the properties. The implication shows the relationship between the generalized \(\alpha \) b-closed sets and the other existing sets.