Contents

Abstract 1

1 Introduction 5

1.1 Fiber Bragg Grating Theory ... 6
1.2 Historic Introduction .. 9
1.3 Photosensitivity in Optical Fibers ... 11
1.4 Fabrication Techniques of the Fiber Bragg Gratings 14
 1.4.1 Single-Beam Internal Technique 14
 1.4.2 Dual-Beam Holographic Technique 16
 1.4.3 Phase-Mask Photolithographic Technique 17
 1.4.4 Point-by-Point Fabrication Technique 19
1.5 Fiber Bragg Grating Model ... 21
 1.5.1 Coupled Mode Theory .. 21
 1.5.2 Solution of Coupled Mode Equation in Linear Case 24
 1.5.3 Concept of Photonic Bandgap ... 26
 1.5.4 Spectral Response of Bragg Grating 29
 1.5.5 Estimation of Bandwidth of Bragg Grating 33
 1.5.6 Phase Response of Bragg Grating 35
1.6 Fiber Bragg Grating Under Nonlinear Regime

1.6.1 Introduction to Nonlinear Optics

1.6.2 Nonlinearity in Optical Fiber

1.6.3 Nonlinear Optics in Fiber Bragg Grating

1.6.4 Previous Research on Nonlinear Periodic Structure

1.6.4.1 CW Wave Propagation in Nonlinear Periodic Structure

1.6.4.2 Pulse Propagation in Nonlinear Periodic Structure

1.6.4.3 Shifting of the Stopband in Nonlinear Periodic Structure

1.7 The Need for Additional Research

1.8 Plan of the Thesis

References

2 Effect of Cubic Nonlinearity on Reflectivity of FBG

2.1 Nonlinear Coupled Mode Equation in Cubic Medium

2.2 Filter Characteristics of Nonlinear Fiber Bragg Grating

2.3 Dispersive Optical Bistability in Nonlinear FBG

2.4 Conclusions

References

3 Effect of Cubic-Quintic Nonlinearity on Reflectivity of FBG

3.1 Introduction

3.2 Theoretical Model

3.3 Nonlinear Dispersion Curves in Cubic Quintic Medium

3.4 Filter Characteristics of FBG in CQ Medium
4 Effect of Kerr Nonlinearity on Transmittivity of FBG

4.1 Theoretical Analysis of Fiber Bragg Grating in Transmission Mode

4.2 Study of Optical Limiting in Kerr FBG

4.3 Study of Optical Multistability in Nonlinear FBG

4.4 Conclusions

5 Nonlinear Optical Phase Shift Analysis in Fiber Bragg Grating

5.1 Introduction

5.2 Theoretical Formulation

5.3 Results and Discussions

5.4 Conclusions

6 Conclusion and Future Scope of the Thesis
List of Figures

1.1 Schematic illustration of a fiber Bragg grating. Dark and light shaded regions within the fiber core show periodic variations of the refractive index... 7

1.2 Shows the application of a FBG as an optical filter. Light waves at several different wavelengths are traveling through the optical fiber and entering into the FBG. One of the wavelengths (λB) is reflected back by the FBG......8

1.3 Figure of bond structures for photo-sensitization and recombination process...12

1.4 A typical apparatus used in generating self-induced Bragg gratings using an argon ion laser. Typical reflection and transmission characteristics of these types of gratings are shown in the graph..15

1.5 Schematic illustration of the dual-beam holographic technique............16

1.6 Schematic illustration of a phase mask interferometer used for making fiber gratings...18

1.7 Schematic of set-up for fabricating Bragg gratings using the point-by-point technique..20

1.8 Dispersion curves showing variation of δ with q and the existence of the photonic bandgap for a fiber grating...27
1.9 Curve showing variation of group velocity V_G with δ in a fiber Bragg grating...28

1.10 Schematic of a FBG of length L illuminated by electromagnetic field of amplitude $A(z)$..29

1.11 Calculated reflection spectral response as a function of wavelength for five different fiber Bragg gratings, with increasing lengths.................................32

1.12 Peak reflectivity (R_{max}) as a function of Bragg grating length (L), calculated for different values of grating index n_g: (1) 0.25×10^{-3} (dashed dot curve), (2) 0.5×10^{-3} (dashed curve), (3) 0.75×10^{-3} (dotted curve) and (4) 1×10^{-3} (solid curve)...33

1.13 Variation in (a) The real part (χ_ℓ), (b) the imaginary part (ψ_ℓ) and (c) the phase (ϕ_ℓ) of reflection coefficient (r_ℓ) plotted as a function of wavelength for two values of grating strength $\kappa L = 1$ (dotted curve) and $\kappa L = 2$ (solid curve)...36

1.14 Intensity dependent response of a nonlinear fiber Bragg grating. It shows that the Bragg frequency ω_0 shifts to lower frequencies ω_0^- and ω_0^+ with increasing intensity. In addition, the size of the bandgap increases with increasing intensity..43

1.15 The transmitted versus incident intensity characteristic of a bistable optical element exhibiting a hysteresis characteristic...45

2.1 Schematic of a FBG of length L illuminated by electromagnetic field amplitude $A(z)$...69
2.2 Reflectivity \((R_{ng}) \) as a function of wavelength and input intensities for uniform fiber Bragg gratings with \(\kappa L \approx 1 \) ...72

2.3 Reflectivity \((R_{ng}) \) as a function of wavelength and input intensities for uniform fiber Bragg gratings with \(\kappa L \approx 2 \) ...72

2.4 Reflectivity \((R_{ng}) \) as a function of wavelength and input intensities for uniform fiber Bragg gratings with \(\kappa L \approx 3 \) ...73

2.5 Reflectivity \((R_{ng}) \) versus wavelength at input intensity 9.5 kW/cm\(^2\) for uniform fiber Bragg grating with (a) \(\kappa L \approx 1 \), (b) \(\kappa L \approx 2 \) and (c) \(\kappa L \approx 3 \)75

2.6 (a) Schematic illustration of a Fabry-Perot (F-P) interferometer containing a nonlinear medium, (b) Bistable response of a nonlinear F-P interferometer..77

2.7 Reflected vs. incident intensity for a nonlinear FBG with \(\kappa L = 1 \) for different values of detuning \(\delta L \) ...81

2.8 Reflected vs. incident intensity for a nonlinear FBG with detuning wavelength \(\lambda = 1551 \) nm for different values of \(\kappa L \) ...83

3.1 Nonlinear dispersion curves showing variation of \(\delta \) with \(q_{eq} \) for input intensities 10 GW/cm\(^2\) (a) and 15 GW/cm\(^2\) (b). Doted curves show the linear case\((y_1, y_2 = 0) \), dashed curves show the nonlinear cubic case \((y_1 \neq 0, y_2 = 0) \) and solid lines show the cubic-quintic case \((y_1, y_2 \neq 0) \)..101
3.2 Reflectivity \(R_{cq} \) of CQFBG as a function of wavelength at various input intensity with \(\kappa L = 2 \). Doted curves show the cubic case and solid curves show the cubic-quintic case. ...104

4.1 Schematic of a FBG of length L illuminated by electromagnetic field amplitude \(A(z) \) ..115

4.2 An ideal optical limiter...118

4.3 Optical limiting behavior of chalcogenide FBG with four detuning wavelengths 1550.5 nm (doted curve), 1551 nm (dashed curve), 1551.5 nm (dashed-doted curve) and 1552 nm (solid curve)..122

4.4 Threshold limiting intensity at \(dI_1/dI_0 = 0 \) for four detuning wavelengths 1550.5 nm (doted curve), 1551 nm (dashed curve), 1551.5 nm (dashed-doted curve) and 1552 nm (solid curve). ..124

4.5 Optical multistable response of a nonlinear F-P interferometer. After Ref. (32)..126

4.6 Transmitted vs. incident intensity for a nonlinear fiber Bragg grating for different values of detuning wavelengths...129

5.1 Variation in (a) the transmittivity \(T_{ne} \) (b) the nonlinear phase shift \(\phi_{NL} \) with respect to the input intensity for various input wavelengths 1549.2 nm (dashed curve), 1549.6 nm (doted curve) and 1549.7 nm (solid curve); Bragg wavelength \(\lambda_B = 1550 \) nm..141

5.2 Variation in (a) the transmittivity \(T_{ne} \) (b) the nonlinear phase shift \(\phi_{NL} \) with respect to the input intensity for various input wavelengths 1550.2 nm (dashed curve), 1550.4 nm (doted curve) and 1550.6 nm (solid curve); Bragg wavelength \(\lambda_B = 1549.2 \) nm..142
List of Tables

1.1 Calculated bandwidth of a fiber Bragg grating reflector at different values of kL ... 34
Nonlinear Optical Properties of Fiber Bragg Grating for Optical Communication