APPENDIX-XX

NOTE ON PROCEDURE OF CALCULATION OF COEFFICIENTS BY AITKEN'S PIVOTAL CONDENSATION METHOD

The following are the procedures for calculating the Regression Coefficients by the Aitken's Pivotal Condensation Method.

STEPS IN CALCULATING REGRESSION COEFFICIENTS:

<table>
<thead>
<tr>
<th>Pivot (1)</th>
<th>(2)</th>
<th>Check (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1 .42 .41 .32 -1 0 0 0 1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 .42 1 .50 .30 0 -1 0 0 1.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 .41 .50 1 .40 0 0 -1 0 1.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 .32 .30 .40 1 0 0 0 -1 1.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 .68 .43 .32 .46 0 0 0 0 1.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) | (i) | (j) |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.823</td>
<td>.327</td>
<td>.165</td>
<td>.42</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.73</td>
</tr>
<tr>
<td>1 .397</td>
<td>.200</td>
<td>.510</td>
<td>-1.215</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.327</td>
<td>.831</td>
<td>.268</td>
<td>.410</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.165</td>
<td>.268</td>
<td>.897</td>
<td>.320</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.144</td>
<td>.041</td>
<td>.242</td>
<td>.680</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.701</td>
<td>0.202</td>
<td>0.243</td>
<td>0.397</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.288</td>
<td>0.346</td>
<td>0.566</td>
<td>-1.426</td>
<td>0</td>
<td>0</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.202</td>
<td>0.864</td>
<td>0.235</td>
<td>0.200</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.016</td>
<td>0.213</td>
<td>0.606</td>
<td>0.174</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.805</td>
<td>0.165</td>
<td>0.085</td>
<td>0.288</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.204</td>
<td>0.105</td>
<td>0.357</td>
<td>-1.242</td>
<td>0</td>
<td>0</td>
<td>0.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.217</td>
<td>0.611</td>
<td>0.183</td>
<td>0.022</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.566</td>
<td>0.160</td>
<td>-0.099</td>
<td>0</td>
<td>269</td>
<td>0</td>
<td>0</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIRST CONDENSATION STARTING WITH ONE

(i) Tetrad between First and second line.

\[
\begin{align*}
1 \times 1 & - .42 \times .42 = .823 \\
1 \times .50 & - .42 \times .41 = .327 \\
1 \times .30 & - .42 \times .32 = .165 \\
1 \times 0 & - (-1) \times .42 = .42 \\
1 \times (-1) & -0 \times .42 = -1 \\
1 \times 0 & -0 \times .42 = 0 \\
1 \times 0 & -0 \times .42 = 0
\end{align*}
\]

(ii) Tetrad between first and third line.

\[
\begin{align*}
1 \times .50 & - .41 \times .42 = .327 \\
1 \times 1 & - .41 \times .41 = .831 \\
1 \times .40 & - .41 \times .32 = .268 \\
1 \times 0 & - .41 (-1) = .41 \\
1 \times 0 & - .41 \times 0 = 0 \\
1 \times (-1) & - .41 \times 0 = -1 \\
1 \times 0 & -0 \times .41 = 0
\end{align*}
\]

(iii) Tetrad between first and fourth line.

\[
\begin{align*}
1 \times .30 & - .32 \times .42 = .165 \\
1 \times .40 & - .32 \times .41 = .268 \\
1 \times .1 & - .32 \times .32 = .897 \\
1 \times 0 & - .32 \times -1 = .32 \\
1 \times 0 & - .32 \times 0 = 0 \\
1 \times 0 & -0 \times .32 = 0 \\
1 \times -1 & - .32 \times 0 = -1
\end{align*}
\]
(iv) Tetrad between first and fifth line.

\[
\begin{align*}
1 \times .43 - .68 \times .42 &= .144 \\
1 \times .32 - .41 \times .68 &= .041 \\
1 \times .46 - .32 \times .68 &= .242 \\
1 \times 0 - (-1) \times .68 &= .68 \\
1 \times 0 - 0 \times .68 &= 0 \\
1 \times 0 - 0 \times .68 &= 0 \\
1 \times 0 - 0 \times .68 &= 0
\end{align*}
\]

SECOND CONDENSATION STARTING WITH ONE

(v) Tetrad between first and second line.

\[
\begin{align*}
1 \times .831 - .327 \times .397 &= .701 \\
1 \times .268 - .327 \times .200 &= .202 \\
1 \times .410 - .327 \times .510 &= .243 \\
1 \times 0 - .327 \times (-1.215) &= .397 \\
1 \times (-1) - .327 \times 0 &= -1 \\
1 \times 0 - .327 \times 0 &= 0
\end{align*}
\]

(vi) Tetrad between first and third line

\[
\begin{align*}
1 \times .268 - .165 \times .397 &= .202 \\
1 \times .897 - .165 \times .200 &= .864 \\
1 \times .320 - .165 \times .510 &= .235 \\
1 \times 0 - .165 \times (-1.215) &= .200 \\
1 \times 0 - .165 \times 0 &= 0 \\
1 \times (-1) - .165 \times 0 &= -1
\end{align*}
\]
(vii) Tetrad between first and fourth line.

\[
\begin{align*}
1 \times .041 - .144 \times .397 &= -.016 \\
1 \times .242 - .144 \times .200 &= .213 \\
1 \times .680 - .144 \times .510 &= .606 \\
1 \times 0 - .144 \times (-1.215) &= .174 \\
1 \times 0 - .144 \times 0 &= 0 \\
1 \times 0 - .144 \times 0 &= 0
\end{align*}
\]

THIRD CONDENSATION STARTING WITH ONE

(viii) Tetrad between first and second line.

\[
\begin{align*}
1 \times .864 - .202 \times .288 &= .805 \\
1 \times .235 - .202 \times .346 &= .165 \\
1 \times .200 - .202 \times .566 &= .085 \\
1 \times 0 - .202 \times (-1.426) &= .288 \\
1 \times (-1) - .202 \times 0 &= -1
\end{align*}
\]

(ix) Tetrad between first and third line.

\[
\begin{align*}
1 \times .213 - (-.016) \times .288 &= .217 \\
1 \times .606 - (-.016) \times .346 &= .611 \\
1 \times .174 - (-.016) \times .566 &= .183 \\
1 \times 0 - (-.016) \times (-1.426) &= 0 \\
1 \times 0 - (-.016) \times 0 &= 0
\end{align*}
\]

(x) Tetrad between first and fourth line.

\[
\begin{align*}
1 \times .611 - .217 \times .204 &= .566 \\
1 \times .183 - .217 \times .105 &= .160
\end{align*}
\]
\[
1 \times (-.022) \times .217 \times .357 = -.099 \\
1 \times 0 \times -.217 \times (-1.242) = .269
\]

CHECK:

(i) \[1 \times 1.22 \times -.42 \times 1.15 = .73\]
(ii) \[1 \times 1.31 \times -.41 \times 1.15 = .83\]
(iii) \[1 \times 1.02 \times -1.15 \times .32 = .65\]
(iv) \[1 \times 1.89 \times -.68 \times 1.15 = 1.11\]
(v) \[1 \times .83 \times -.327 \times .89 = .54\]
(vi) \[1 \times .65 \times -.165 \times .89 = .50\]
(vii) \[1 \times 1.10 \times -.144 \times .89 = .98\]
(viii) \[1 \times .98 \times (-.016) \times .77 = .99\]
(ix) \[1 \times .99 \times .217 \times .42 = .89\]

Steps in Calculating Pooling Square:

Regression coefficients which have been calculated by
the help of Atkin's Pivotal Condensation Method is placed ver-
tically and horizontally above their respective tests and the
values of intercorrelations of the tests were put in the pool-
ing square, as shown below. A, B and C is calculated in this
problem to find out multiple correlation.
<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.566</td>
<td>.68</td>
<td>.43</td>
<td>.32</td>
<td>.46</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>.68</td>
<td>1</td>
<td>.42</td>
<td>.41</td>
<td>.32</td>
</tr>
<tr>
<td>.68</td>
<td>1</td>
<td>.42</td>
<td>.41</td>
<td>.32</td>
</tr>
<tr>
<td>.43</td>
<td>.42</td>
<td>1</td>
<td>.50</td>
<td>.30</td>
</tr>
<tr>
<td>.43</td>
<td>.42</td>
<td>1</td>
<td>.50</td>
<td>.30</td>
</tr>
<tr>
<td>.32</td>
<td>.41</td>
<td>.50</td>
<td>1</td>
<td>.40</td>
</tr>
<tr>
<td>.32</td>
<td>.41</td>
<td>.50</td>
<td>1</td>
<td>.40</td>
</tr>
<tr>
<td>.30</td>
<td>.40</td>
<td>1</td>
<td>.40</td>
<td>1</td>
</tr>
<tr>
<td>.30</td>
<td>.40</td>
<td>1</td>
<td>.40</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
.566 \times .68 &= .3848 \\
.160 \times .43 &= .0688 \\
-.099 \times .32 &= -.0316 \\
.269 \times .46 &= .1237 \\
.41 \times .566 &= .2320 \\
.50 \times .160 &= .0800 \\
1 \times -.099 &= -.099 \\
.40 \times .269 &= .1076 \\
\end{align*}
\]

\[
\begin{align*}
1 \times .566 &= .5660 \\
.42 \times .566 &= .2377 \\
.42 \times .160 &= .0672 \\
1 \times .160 &= .1600 \\
.41 \times -.099 &= -.0405 \\
.50 \times -.099 &= -.0495 \\
.32 \times .269 &= .0860 \\
.30 \times .269 &= .0807 \\
.32 \times .566 &= .1811 \\
.30 \times .160 &= .0480 \\
.40 \times -.099 &= -.0396 \\
1 \times .269 &= .2690 \\
\end{align*}
\]
The pooling square thus condenses to

\[
\begin{array}{c|cc}
1.0000 & .5457 \\
.5457 & .5457 \\
\end{array}
\]

\[R_{1(2345)} = \frac{.5457}{\sqrt{.5457}} = .74\]

Alternatively, the pooling square can also be estimated as -

\[A = 1\]
\[B = (.566)^2 + (.160)^2 + (-.099)^2 + (.269)^2 + 2 \times (.42) \times (.566) \times (.160) + 2 \times (.32) \times (.269) \times (.566) + 2 \times (.30) \times (.269) \times (-.099) + 2 \times (.32) \times (-.099) \times (.566) + 2 \times (.30) \times (.269) \times (.160) + 2 \times (.40) \times (.269) \times (-.099)\]

\[= .5457\]

\[C = (.566) \times .68 + (.160) \times (.43) + (-.099) \times (.32) + (.269) \times (.46)\]

\[= .5457\]

The pooling square thus condenses to

\[
\begin{array}{c|cc}
1(\alpha) & .5457(\alpha) \\
& .5457(B) \end{array}
\]

Here, \(B = C\), because regression coefficients have been used as weights, then -

\[R_{1(2345)} = \sqrt{C} = \sqrt{.5457} = .74\]