<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GSMA</td>
<td>Group Speciale Mobile Association</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>ARPANSA</td>
<td>Australian Radiation Protection and Nuclear Safety Agency</td>
</tr>
<tr>
<td>ICNIRP</td>
<td>International Commission on Non-ionizing Radiation</td>
</tr>
<tr>
<td>RF</td>
<td>Radio-frequency</td>
</tr>
<tr>
<td>RFR</td>
<td>Radiofrequency radiation</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromagnetic fields</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>KHz</td>
<td>Kilo Hertz</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>GHz</td>
<td>Giga Hertz</td>
</tr>
<tr>
<td>1G</td>
<td>First generation mobile phone</td>
</tr>
<tr>
<td>2G</td>
<td>Second generation mobile phone</td>
</tr>
<tr>
<td>3G</td>
<td>Third generation mobile phone</td>
</tr>
<tr>
<td>4G</td>
<td>Fourth generation mobile phone</td>
</tr>
<tr>
<td>5G</td>
<td>Fifth generation mobile phone</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile communications</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Services</td>
</tr>
<tr>
<td>SAR</td>
<td>Specific Absorption Rate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PD</td>
<td>Power Density</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>OS</td>
<td>Oxidative stress</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>(O_2^-)</td>
<td>Superoxide anion radical</td>
</tr>
<tr>
<td>(H_2O_2)</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>ROO'</td>
<td>Peroxy radicals</td>
</tr>
<tr>
<td>OH'</td>
<td>Hydroxyl radicals</td>
</tr>
<tr>
<td>MDA</td>
<td>Malondialdehyde</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous waves</td>
</tr>
<tr>
<td>HSP</td>
<td>Heat shock protein</td>
</tr>
<tr>
<td>SSB</td>
<td>Single strand break</td>
</tr>
<tr>
<td>DSB</td>
<td>Double strand break</td>
</tr>
<tr>
<td>HLEC</td>
<td>Human lens epithelial cells</td>
</tr>
<tr>
<td>RPE</td>
<td>Retinal pigment epithelium</td>
</tr>
<tr>
<td>CR length</td>
<td>Crown rump length</td>
</tr>
<tr>
<td>PCT</td>
<td>Proximal convoluted tubule</td>
</tr>
<tr>
<td>DCT</td>
<td>Distal convoluted tubule</td>
</tr>
<tr>
<td>SEH</td>
<td>Standard epithelial height</td>
</tr>
<tr>
<td>SCGE</td>
<td>Single cell gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>HBBS</td>
<td>Hanks balanced salt solution</td>
</tr>
<tr>
<td>LMA</td>
<td>Low melting agarose</td>
</tr>
<tr>
<td>NMA</td>
<td>Normal melting agarose</td>
</tr>
</tbody>
</table>