CHAPTER 1

INTRODUCTION

1.1 PROBLEM IDENTIFICATION

In the past few decades, the wireless communication technology has seen tremendous growth for various applications. The wireless communication industry faces challenges due to technological development in the wireless network standards which are continuously evolving from 2G to 3G and then further onto 4G. Each generation of wireless network differs significantly in link-layer protocol standards causing problems for the subscribers, wireless network operators and equipment vendors. The subscribers are forced to buy new handsets whenever a new generation of network standards is deployed.

In a similar way, the wireless network operators are also facing problems during migration of the network from one generation to next due to presence of large number of subscribers. They use legacy handsets that may be incompatible with newer generation network. The equipment vendors are also facing problems in rolling out newer generation equipment due to the short time-to-market requirements. The problems have inhibited the deployment of global roaming facilities causing great inconvenience to subscribers who travel frequently from one continent to another.

The Software Defined Radio (SDR) technology enables the implementation of radio functions in networking infrastructure equipment and subscriber terminals as software modules running on a generic hardware
platform. This significantly eases migration of networks from one generation to another since the migration would involve only a software upgrade. Further, the radio functions implemented as software modules, felicitate different standards in the same equipment and handsets. An appropriate software module can be chosen to run (either explicitly by the user or implicitly by the network) depending on the network requirements.

This helps in building multi-mode handsets and equipment resulting in ubiquitous connectivity irrespective of underlying network technology used. According to SDR forum, SDR is used to describe radios that provide software control of variety of modulation techniques, wide band or narrowband operations, waveform requirements and communications security functions, current and evolving standards over a broad frequency range (Reed 2002).

Today’s SDR technology requires a frequency synthesizer for waveform requirements that is capable of tuning to different output frequencies with extremely fine frequency resolution with a switching speed of the order of nanoseconds. The resolution requirements of many systems are so severe that they are surpassing the performance capabilities of conventional Direct Digital Synthesizer. For this reason, this research work focuses on the study and implementation of efficient DDS techniques, specifically concentrates on fine frequency resolution, low phase noise, fast settling time with minimum area and power on reconfigurable hardware, to be applied to multi-standard SDRs.

The architecture for implementing the physical layer signal processing in a SDR should be selected, because it decides the flexibility, modularity, scalability and performance of the final design. Any signal
processing algorithm can be implemented using variety of digital hardware such as General Purpose Processors (GPPs), Digital Signal Processors (DSPs), Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs) (Mitola 1995). Because of high power usage and low level of parallelism, GPPs and DSPs are not suitable for real time applications.

ASICs provide the most optimized hardware choice suited for a particular application, but due to their high initial cost and lack of flexibility, they are not suitable in the design of reconfigurable radios. For this reason, SDR designers have turned to FPGAs to provide a flexible and reconfigurable hardware that can support complex and computationally intensive algorithms used in voice, data and multimedia applications.

Keeping the above in view, the attempt has been made to develop a system to improve the overall performance of the DDS in terms of Frequency resolution, Operating frequency, Area utilization and Spectral purity for SDR applications. This thesis focuses the design, analysis, implementation of improved Direct Digital Synthesizer for SDR using Xilinx ISE 9.2i, ModelSim 6.2g and MATLAB 7.5 tools. The FPGA is used to implement the developed system as a partial reconfigurable device.

1.2 LITERATURE SURVEY

The literatures available related to the present research work have been reviewed and presented in this section. Recent developments in SDR require Direct Digital Synthesis with low power consumption, high output frequency, fine frequency resolution and high throughput. Based on the
literature survey, the problems have been identified in existing DDS architecture for SDR applications.

These problems have motivated the research to improve the overall performance of DDS in terms of frequency resolution, phase resolution, low power consumption and high throughput with minimum area requirement which is highly suitable for SDRs.

The SDR forum defines SDR as a “radio in which some or the entire physical layer functions are software defined.” This implies that the architecture is flexible such that the radio may be configured, occasionally in real time, to adapt to various air standards and waveforms, frequency bands, bandwidths, and modes of operation. That is, the SDR is a multifunctional, programmable, and easy to upgrade radio that can support a variety of services and standards while at the same time provide a low-cost power-efficient solution (Rouphael 2009).

SDR proposes a radio architecture where the analogue to digital (and digital to analogue) conversion is performed as close as possible to the antenna. In SDR most of the radio components, now in the digital domain, are implemented in a reconfigurable platform. This reconfigurability makes SDR particularly suitable for working with multi-standard systems and for providing an upgrade path to future standards (Buracchini 2000).

Traditional designs of high bandwidth frequency synthesizers employ the use of a Phase Locked Loop (PLL). A DDS provides many significant advantages over the PLL approaches. Fast settling time, sub-hertz frequency resolution, continuous-phase switching response and low phase noise are features easily obtainable in the DDS systems. By programming the
DDS, adaptive channel bandwidths, modulation formats, frequency hopping and data rates are easily achieved. The flexibility of the DDS makes it ideal for signal generator for software defined radio. This is an important step towards a “Software Defined Radio” which can be used in various systems (Reed 2002).

All pass-band communication systems employ some form of up/down conversion. Frequency conversion is required to transmit the data in the desired frequency band. Different frequency bands are also used to allow efficient use of the allocated spectrum when using Frequency Division Multiple Access (FDMA).

The baseband signal is up/down converted by either multiplication by a sinusoid of controllable frequency (e.g. QAM) or by directly modulating the frequency of the sinusoid (e.g. FM, GMSK). A fully digital implementation of any Communication system requires Direct Digital Frequency Synthesis (DDFS). Digital frequency synthesis is also preferred over the analog approach due to lower phase noise, fine frequency resolution and the ability to rapidly change frequency (Tan1995).

The direct digital synthesizer is a well-known technique for the reconfigurable generation of a sinusoidal waveform. The DDS architecture was introduced by Tierney et al (1971). The system has two inputs: a clock frequency, f_{clk} and a Frequency Control Word (FCW).
Kang and Swartzlander (2006) proposed the direct digital frequency synthesizer for generating sinusoids. Unlike conventional analog oscillator structures, DDS can be applied where fast frequency switching, fine tuning and a coherent phase relationship among sinusoids are required. In 1984 D.A. Sunderland et al have developed a single-chip, radiation-hardened direct digital synthesizer using a 3.5\(\mu\)m gate length complementary metal-oxide-semiconductor/silicon-on-sapphire technology. Sunderland’s DDS resulting in 12bit output precision with 1084 logic gates and uses on-chip read-only memory for phase to amplitude conversion. The spurious frequency dynamic range was found to be 65dBC. The power consumption has been measured at 300mW.

The DDS with Interpolation Circuit has been presented by Nakagawa and Nosaka (1997). The power consumption of this Interpolated DDS circuit was found to be 1.5W. A non-linear interpolation based ROM-less Direct Digital Frequency Synthesizer and low power DDS Phase Accumulation truncation were described by Nicholas (1988) and Bellaouar et al (2000).

Liu et al (2001) proposed the direct digital frequency synthesizer using a new decomposition method without the large sine ROM table. This method maximum operating frequency was found to be 85MHz. For an 10MHz sinusoidal output, the phase noise has observed at 114dBC. Its power dissipation was measured at 80mW.

McEwan et al (2006a) had proposed a ROM-less Direct Digital Frequency Synthesizer using non-linear interpolation method and achieved only 60dBC of Spurious Free Dynamic Range. The 24-bit 5GHz Direct Digital Synthesizer Radio Frequency Integrated Circuit (RFIC) with direct digital
modulation was developed by Geng et al (2010). It is reported that the ROM-less architecture is found to have 24 bit and 12 bit for phase modulation and frequency resolution respectively.

The Direct Digital Synthesizer using Analog Interpolation was proposed by McEwan and Collins (2006b). It was implemented in 0.35µm Complementary Metal Oxide Semiconductor (CMOS) technology and achieved 50dBc of SFDR.

Song and Kim (2004a) had proposed the 14-bit direct digital frequency synthesizer utilizing a sigma-delta noise shaping technique to reduce spurs arising from phase truncation. The phase accumulator architecture adopts a second-order sigma-delta modulator. The sigma-delta noise shaping eliminates periodicity inherent in the phase truncation error. The DDS Integrated Circuit(IC) was fabricated in 0.25µm CMOS technology and the measured SFDR was 110 dBc for 16-bit phase value and 14-bit sine-amplitude output. The fabricated IC consumed at 100 mW of power and maximum operating frequency up to 250 MHz.

Dai et al (2004) had designed the low power high-speed direct digital synthesizer (DDS) using ROM-less approach. The DDS core included an 8-bit accumulator and an 8 bit cosine-weighted digital-to-analog converter (DAC) operating at maximum 5GHz clock frequency and power dissipation was found to be 2W. Turner et al (2006) had reported that the synthesizer with ROM-Less architecture at 13GHz Clock Frequency using Indium Phosphide Double Hetero junction Bipolar Transistor (InP DHBT) Technology. It was found that the output frequency is 6.5 GHz and the measured SFDR is 34dBc.
The 2GHz 8-bit CMOS ROM-less direct digital frequency synthesizer was presented by Xuefeng et al (2005). In order to achieve high speed performance and low power dissipation, the CMOS Current Mode Logic (CML) was chosen to implement the logic cells. The DDFS chip was implemented in 0.35µm CMOS technology with power consumption of 820mW.

Caro et al (2005) have proposed a direct digital frequency synthesizers using an optimized piecewise linear approximation for phase to sine mapping, named dual-slope. The dual-slope technique allows reducing ROM size with respect to piecewise-linear approximation approaches. The high-speed DDFS was fabricated in 0.25µm CMOS technology and produced a 12 bit outputs with a spectral purity of 80 dBc. The maximum operating frequency was found to be 480 MHz and its power dissipation was measured at 72 mW.

Recently, Ching et al (2011) had developed the direct digital frequency synthesizer using an analog-sine-mapping technique. The DDS chip was designed in 0.35µmSiGeBiCMOS process. The method was used the analog-interpolating technique, with 9 bits of phase resolution and 8 bits of amplitude resolution. The DDS Chip was operated at 5GHz clock frequency and power consumption was found to be 460mW. The SFDR of the DDS was measured at 48 dBc.

The above mentioned methods have been developed DDS using Application Specific Integrated Circuit (ASIC) design not on reconfigurable hardware. In fact, ASICs possess high initial cost and less flexibility which makes it poorly suitable in the design of reconfigurable radios or Software
Defined Radios. These facts made the radio designers choose either FPGA or Digital Signal Processors with suitable software.

Several researchers have discussed and investigated Direct Digital Synthesizer on FPGAs. These designs use more number of registers, multiplexers and operating frequency is up to 160 MHz. The DDS using nonlinear Read Only Memory addressing with improved compression ratio and quantization noise has been proposed Lakshmi et al (2006). It was found that 1 bit Phase resolution, 15 bits Amplitude resolution and 89dBc of spectral purity have been found. The design was implemented in Xilinx Spartan 2 FPGA and ROM based DDS architecture.

Jeng et al (2010)have proposed an equi-section division method utilizing the symmetry property and amplitude approximation of a sinusoidal waveform to design a DDFS. The sinusoidal amplitude value is stored in a Read-Only Memory (ROM) to reconstruct the real sinusoidal waveform. The minimum size of the total ROMs can be computed according to the bit number of the equi-sections and it has been implemented on a Field Programmable Gate Array (FPGA) development board.

The DDFS architecture with reduced memory size design had reported by Soudris et al (2003). It was based on a look up table method, which performs functional mapping from Phase to sine amplitude conversion. The ROM technique was utilized to design a DDS and produced a 16 bit output with a spurious performance of 99.66dBc in a Xilinx FPGA Module. Later on, the Multiplier less direct digital frequency synthesizer was proposed by Sung et al, 2009. This method provides a spurious free dynamic range (SFDR) of 84.4 dBc and the design implemented in Xilinx FPGA.
The methods so far discussed have utilized either ROMLUT approach or ROM compression technique for phase to sine amplitude conversion. However, this architecture demands a very large ROM for the storage of sinusoid amplitude and consequently suffers from the inherent drawback of large power dissipation, large chip area and slow speed. Even though the ROM size has been significantly reduced by truncating the output of the phase accumulator, the added spurious noise degrades the spectral purity. Therefore, an effort has been made to eliminate ROMLUT approach and alternative technique has been identified to solve the limitations in the phase to amplitude conversion.

A modified direct-digital synthesizer using noise shaping to reduce the effects of phase-accumulator truncation on the output spectrum have been proposed by Paul and Franco Maloberti (1991). The discrete spectral disturbances associated with this truncation error were reduced with this method, making the synthesizer suitable for high performance signal processing.

Later on, more researchers have been published direct digital synthesizer with different design methodologies. An arbitrary waveform Direct Digital Frequency Synthesis has been proposed by Ashrafi et al (2004). In this method, one period of the desired periodic waveform is divided into sections, and each section is approximated by a series of Chebyshev polynomials up to degree. A Direct Digital Synthesizer implemented in Indium Phosphide (InP) double hetero junction bipolar transistor technology has been reported by Turner et al (2008).

The DDS has reported a 12 bit phase accumulator and a ROM-based phase converter. The measured spurious free dynamic range is found at
40.4dBc. The high-speed SiGe BiCMOS direct digital frequency synthesizer was proposed by Jinshan (2009). The DDS design has been processed in 0.35μm SiGe BiCMOS process technology and worked at 1 GHz system frequency. The DDS was capable of generating a frequency of sine wave up to 400MHz.

The two major blocks of DDS is Phase Accumulator and Phase to Amplitude converter. Nakagawa and Nosaka (1997) have proposed DDS using interpolation circuits which is used to reduce the effects of phase-accumulator truncation on the output spectrum. This method used only 15bits phase accumulator and spurious free dynamic range was less than 40 dBc.

More researchers have developed the DDS module using pipeline or non pipelined architecture for DDS. This architecture can be implemented in either CMOS logic cells or FPGAs. In conventional pipelining, clocked elements such as latches and flip-flops are used to divide the circuit’s critical paths into shorter paths (Tanner Corporation 1999). Conventional pipelining tends to increase power consumption greatly, due to introduction of registers and associated clock power. Additionally, a large number of pipeline stages are necessary to attain a high throughput, and the latency of the circuit increases proportionally to the number of stages. These limitations are overcome by wave pipelining technique.

Reddy et al (2009) have proposed the FPGA implementation of high speed, low power digital up converter for power line communication systems. The major disadvantage in DDS is spectral purity. The main source of the spurs in the DDS is precision with which the accumulator defines phase. From the accumulator only a small number of bits are used as address for the sine ROM, this corresponds to a phase truncation. The spur reduction
techniques used in the sine output direct digital synthesizers (Vankka 1996) and phase accumulator (Zhang 2001) were discussed. The analysis was restricted only to phase and amplitude quantization errors. Three spur reduction methods in the DDS were presented: Modified phase accumulator, a high-pass filtered amplitude dither and a tunable amplitude error feedback structure.

Horowitz and George (2005) have developed 32 bit parallel phase accumulator architecture for DDFS. The 32-bit parallel phase accumulator was designed using TSMC’s 0.18µm CMOS process technology. The parallel architecture requires about 1/3 less power dissipation than pipeline design at the same process technology.

Caro et al (2005) investigated the optimized piecewise-polynomial approximation technique for DDFS. The tradeoff between ROM and arithmetic circuit complexity was discussed pointing out that a sensible silicon area reduction can be achieved by increasing ROM size and reducing arithmetic circuitry. The piecewise-quadratic DDFSs become effective against piecewise-linear designs for an SFDR higher than 100dBc. The maximum frequency of this DDS was 156MHz and power consumption was 57.3µW/MHz.

Song and Kim (2004a) have reported a Quadrature Direct Digital Frequency Synthesizer (QDDFS) architecture based on a new phase-to-sine conversion technique. This technique used polynomial interpolation and rotational transformation in a fine/coarse approach, achieved high-resolution output with a wide spurious-free dynamic range. The fine/coarse decomposition significantly reduces the size of required lookup tables, and
the polynomial interpolation enables accurate approximation of cosine and sine values.

Two prototype QDDFS ICs were fabricated in 0.35μmCMOS process. The final prototype IC produces 16bit cosine and sine outputs with a spectral purity greater than 100dBc. It has a frequency tuning resolution of 0.03Hz at a 150MHz sampling rate and consumes 350mW. Elliott (2007) has presented high speed direct digital synthesis for next generation RF systems. The direct digital synthesizers ICs uses 0.25μmInP HBT technologies with clock speed at 25GHz.

The technique described by Caro et al (2009) uses Hybrid CORDIC digital synthesizer/mixer corresponds to a rotation of the input vector in the complex plane. This architecture divides the rotation into three sub rotations. The first one uses a few CORDIC stages, in which the rotation direction is parallel that was computed with the help of a small lookup table. The CORDIC algorithm is employed also in the second sub rotation, where the rotation directions are readily available after a simple recoding of the bits of the residual angle. The final rotation is multiplier based to reduce circuit latency and increase performances. This architecture is implemented in 0.25μm CMOS technology.

Moran et al(2006) had proposed DDFS based on two co-prime moduli DDS. The phase truncation is not required in this method which results in low spurs. The design has been implemented in a field-programmable gate array. Strollo et al (2007) had presented a direct digital frequency synthesizer using a Multipartite Table Method (MTM) which is a lookup table compression technique. The low-power operation is achieved through a power-driven synthesis by using two flip-flop topologies (with
different power and delay performances). The test chip has been realized in 0.25 μm technology.

The circuit achieves a 90 dBc SFDR and operates at a maximum clock frequency of 630 MHz, with 76 mW power dissipation. The Direct Digital Frequency Synthesizer with CORDIC Algorithm and Taylor Series Approximation was reported by Jridi et al (2009). The modulating direct digital synthesizer in a quick logic FPGA was proposed using ROMLUT architecture by Morelli (2004). The fundamentals of direct digital synthesis and frequency/Phase hopping capabilities of DDS were extensively presented in Analog devices (1999).

The sinusoidal signal generation which is based on the combination of an IIR digital filter and Coordinate Rotations Digital Computer (CORDIC) arithmetic was discussed by Chenshijie et al (2005). A WCDMA Digital Up Converter (DUC) design based on FPGA was presented by Wei et al (2008). The DDS module was generated by Xilinx DDS Compiler and design flow based on Xilinx system generator. The carry-save arithmetic for high-speed digital signal processing was proposed by Noll (1990).

The CORDIC algorithm for FPGA based computers was investigated by Andraka (1998). A pre-computation based rotation CORDIC algorithm (Kuhlmann and Parhi 2002) and high speed CORDIC algorithm and architecture for DSP applications were proposed (Kuhlmann 1999). The redundant CORDIC methods with a constant scale factor for sine and cosine computation was proposed by Takagi et al in 1991. The low latency redundant CORDIC was proposed to reduce the latency of redundant CORDIC (Timmermann 1992). The pipelining flat CORDIC based trigonometric function generators were presented by Gisuthan et al (2002).
Juang (2004) had reported Para-CORDIC algorithm to pre-compute the direction of rotations without using ROM LUT approach. The semi-flat architecture for high speed and reduced area CORDIC chip was investigated by Kebbati(2006). The iterative based computation eliminates the polarity of micro rotations in CORDIC based sine-cosine generators was investigated by Srikanthan and Gisuthan(2002).

The fast VLSI implementation of CORDIC algorithm(Duprat and Muller 1993) and Double step branching CORDIC algorithm for fast sine and cosine generation was presented (Phatak 1998). The wave pipelining technique for CMOS VLSI circuits and FPGA implementation of CORDIC algorithm were deeply discussed by Parhi in 1999.

The fast binary sine/cosine generator (Baker 1976) and pipelined CORDIC architecture for the implementation of rotational based algorithm (Hu 1985) was investigated. The pipelined and parallel implementation of CORDIC for reconfigurable computing is to achieve very high throughput for rotation, and various other functions such as multiplication, division, as well as hyperbolic and other higher order functions.

The higher radix CORDIC algorithms using SD arithmetic (Lee 1992), (Bruguera 1993) and CS arithmetic (Antelo et al 1996 and 1997) was proposed to address latency reduction. This is possible, since higher radix representation reduces the number of iterations. When compared to the ROM look-up-table approach, where all the required sine/cosine sample values are stored in a ROM, the CORDIC approach does not incur the exponential growth of hardware as the output word size increases (Vankka2005). However, the sequential nature of the CORDIC algorithm makes it difficult to achieve a high-throughput design.
The hybrid wave pipeline CORDIC architecture has overcome these difficulties. The advantages of pipelined CORDIC architecture are high throughput, memory less to store constant angle value, free from looping iteration, and no delay between two data. The DDS system has been implemented using pipelined CORDIC method suffers from two problems: (i) the frequency resolution is determined by the number of pipeline stages (ii) For high clock frequencies, a large number of CORDIC stages are needed to obtain sufficiently fine frequency resolution.

The traditional pipeline CORDIC DDS architecture requires a large number of stages to achieve fine frequency resolution at high clock frequencies (Grayver and Daneshrad 1998).

Increasing the number of stages has a negative impact on both the power consumption and the chip area. Hence an attempt has been made in this present research work to modify the traditional CORDIC architecture into hybrid wave pipeline CORDIC based on recursive computation technique.

FPGA vendors have introduced DDS IP cores to generate sine and cosine waveforms. The Xilinx Logic core IP DDS was presented in Xilinx Logic core DDS data sheet (2003). The core DDS is an RTL generator which reported in Actel FPGA Core DDS Hand book (2006). The Quick Logic DDS core was presented in Quick logic Application note(2006) and Altera DDS IP core was described in Altera DDS IP core Application note (2003).

The above mentioned literatures have motivated the research to improve the performance of DDS in terms of frequency resolution, Phase resolution, Operating Frequency, speed, area utilization and throughput. The proposed DDS design has been implemented on FPGAs to increase the speed
and reduce the resource utilization (Registers and LUTs). This design is expected to reduce the number of slices in FPGA and increase the overall throughput with high computational efficiency.

1.3 OBJECTIVES OF THE WORK

The objectives of the present research work are

- To study and observe the performance degradation in the existing Direct Digital Synthesizer

- To modify the Conventional Phase Accumulator to reduce the hardware complexity and increase the throughput

- To replace the Sine Read Only Memory Look Up Table (ROMLUT) with Hybrid Wave Pipeline Coordinate Rotation Digital Computer (CORDIC) algorithm to increase the precision, speed and minimize the power and area

- To improve the performance of DDS in terms of Frequency resolution, Phase Resolution, Spurious Free Dynamic Range, Speed, Operating frequency and to reduce circuit complexity

- To design and develop the new DDS architecture for SDR and its functionalities are verified with various simulation tools.

- To implement the developed DDS architecture in to FPGA device and its performance has been analyzed
1.4 CONVENTIONAL DIRECT DIGITAL SYNTHESIZER

The Direct Digital Synthesis is a technique which uses digital-data and mixed/analog-signal processing blocks as a means to generate signal waveforms that are repetitive in nature. The DDS can achieve fast frequency switching in small frequency step over a wide band. In addition, it provides linear phase and frequency shifting with good spectral purity (Jeffrey Reed 2002). This enables the synthesizer for a precise, high frequency and a phase tunable output. The synthesizer architecture consists of an accumulator, a ROM /lookup table, a DAC and reconstruction filters.

In essence, the reference clock frequency is “divided down” in DDS architecture by the scaling factor set forth in a programmable binary tuning word. The tuning word is typically 24-48 bits long which enables a DDS implementation to provide superior output frequency tuning resolution (Xilinx Logic Core DDS 2003).

Today’s cost-competitive, high-performance, functionally-integrated, and small package-sized DDS products are fast becoming an alternative to traditional frequency-agile analog synthesizer solutions (Paul and Maloberti 1991). The integration of a high-speed, high-performance and DDS architecture onto a single chip enabled this technology to target a wider range of applications and provide, in many cases, an attractive alternative to analog-based PLL synthesizers. For many applications, the DDS solution holds some distinct advantages over the equivalent agile analog frequency synthesizer employing PLL circuitry.

DDS solutions are implemented in LSI (large-scale integration) and they play an ever-increasing role in digital waveform and clock generation,
and modulation. A major advantage of a DDS is that its output frequency, phase and amplitude can be precisely and rapidly manipulated under digital processor control (Vankka 2005). Other inherent DDS attributes include the ability to tune with extremely fine frequency and phase resolution, and to rapidly "hop" between frequencies.

It is easy to include different modulation capabilities in the DDS by using digital signal processing methods, because the signal is in digital form. By programming the DDS, adaptive channel bandwidths, modulation formats, frequency hopping and data rates are easily achieved. The FPGA implementation of digital functional blocks is used to achieve a high degree of system integration.

The DDS provides micro-Hertz tuning resolution of the output frequency and sub-degree phase tuning capability, all under complete digital control. It produces extremely fast “hopping speed” in tuning output frequency (or phase), phase-continuous frequency hops with no over/undershoot or analog-related loop settling time anomalies. The DDS digital architecture eliminates the need for the manual system tuning and tweaking associated with component aging and temperature drift in analog synthesizer solutions.

The present work investigates the performance of direct digital synthesizer and shows the simulation and implementation details on Xilinx FPGA platform. The different models of the DDS are created, implemented and examined. The models are (i) Conventional DDS with ROMLUT approach (ii) DDS Phase Accumulator is designed by using Hybrid wave pipelined technique (iii) Pipelined PA and pipelined CORDIC DDS (iv) HWP
Recently, Direct Digital Synthesizers are preferred in precise electronic equipment and few modern communication systems because of their significant advantages over Phase Locked Loop based synthesizers (Amir Sodagar 2001). The DDS is composed by the phase accumulator and a block which computes sine and cosine functions with high speed and accuracy (sine/cosine generator). Many applications like all digital QPSK demodulators, tunable digital band-pass filters, mixers for digital receivers, real-time digital spectrum analyzers, directly use the synthesized sine wave in its digital form (De Caro 2005).

1.4.1 Building Blocks of DDS

The conventional DDS is a mixed signal device i.e. it has both analog and digital blocks. These blocks include Phase Register, Phase Accumulator, Phase-to-Amplitude Converter, Digital-to-Analog Converter, and Reconstruction Filter. The functionality of each of these blocks is discussed in the following section. A DDS produces a sine wave at a given frequency. The frequency depends on three variables, the reference-clock frequency \(f_{\text{clk}} \), the binary number programmed into the phase register and length of n-bit accumulator. The basic block diagram of a direct digital synthesizer is shown in Figure 1.1.
The binary number in the phase register provides the main input to the phase accumulator. The binary number is also known as Frequency Control Word.

If a sine look-up table is used, the phase accumulator computes a phase (angle) address for the look-up table, which outputs the digital value of the DAC, in turn it converts that number to a corresponding value of analog voltage or current. To generate a fixed-frequency sine wave, the phase increment is determined by the FCW is added to the phase accumulator with each clock cycle. If the phase increment is large, the phase accumulator will step quickly through the sine look-up table and thus generate a high frequency.
sine wave. If the phase increment is small, the phase accumulator will take more number of steps, accordingly generating a slower waveform (DDS Technical Tutorial 1999).

1.4.2 Phase Accumulator

The phase accumulator consists of an-bit frequency register which stores a digital phase increment word followed by a n-bit full adder and a phase register. The digital input phase increment word is entered in the frequency register. At each clock pulse this data is added to the data previously held in the phase register. The phase increment word represents a phase angle step that is added to the previous value at each $1/f_{\text{clk}}$ seconds to produce a linearly increasing digital value. The phase value is generated using the modulo 2^n property of a n-bit phase accumulator. The output frequency is

$$f_{\text{out}} = \frac{f_{\text{CW}} + f_{\text{clk}}}{2^n}$$

(1.1)

The Equation (1.1) is known as the DDS "tuning equation." f_{clk} is the clock frequency. The frequency resolution of the system equals $f_{\text{clk}}/2^n$. In a practical DDS system, all the bits out of the phase accumulator are not passed on to the LUT but are truncated. This reduces the size of the LUT and does not affect the frequency resolution. The phase truncation only adds a small but acceptable amount of phase noise to the final output (Sodagar et al 2001).
1.4.3 Phase-to-Amplitude Converter

The most critical block in a DDS is the sine/cosine generator which limits the maximum operating frequency of the system and in addition is responsible for most of the DDS power consumption (Caro et al 2005). The DDS’s ROM is a sine Look up Table. It converts digital phase input from the accumulator to output amplitude. The accumulator output represents the phase of the wave as well as an address to a word, which is the corresponding amplitude of the phase in the LUT. The size of the LUT is 2^n words. LUT translates truncated phase information, being in digital form into quantized numerical waveform samples.

The initial stage of the system is the Phase Accumulator (PA) whose contents are updated once at each clock cycle. Each time the PA is updated, the FCW stored in the phase register is added to the number in the phase accumulator register. If the accumulator is 32-bits wide, 2^{32} clock cycles (over 4 billion) are required before the phase accumulator returns to 00...00, and the cycle repeats. The output of the phase accumulator serves as the address to a sine (or cosine) lookup table/ROM/phase-to-amplitude converter. Each address in the Look Up Table (LUT) corresponds to a phase point on the sine wave from 0° to 360°.

The LUT contains the corresponding digital amplitude information for one complete cycle of a sine wave. For $n=4$ and FCW=1, the phase accumulator steps through each of 2^4 possible outputs before it overflows. The corresponding output sine-wave frequency is equal to the clock frequency divided by 2^4. If FCW=2, then the phase accumulator register "rolls over" twice as fast and the output frequency is doubled. For $n=3$ and FCW =2,3 and 4 are applied to the accumulator. For different values of FCW and its corresponding outputs are given in Table.1.1. For an n-bit phase accumulator (n generally ranges from 24 to 32 in most DDS systems), there are 2^n possible
phase points. The digital word FCW in the phase register represents the amount of the phase accumulator, incremented at each clock cycle.

Table 1.1 Accumulator of 3 bits (n=3) controlled with an input of FCW = 2, 3 and 4

<table>
<thead>
<tr>
<th>Accumulator output n=3, FCW=2</th>
<th>Carry output</th>
<th>Accumulator output n=3, FCW=3</th>
<th>Carry output</th>
<th>Accumulator output n=3, FCW=4</th>
<th>Carry output</th>
</tr>
</thead>
<tbody>
<tr>
<td>000(0)</td>
<td>1 (Cycle begins)</td>
<td>000(0)</td>
<td>1 (Cycle begins)</td>
<td>000(0)</td>
<td>1 (Cycle begins)</td>
</tr>
<tr>
<td>010(2)</td>
<td>0</td>
<td>011(3)</td>
<td>0</td>
<td>100(4)</td>
<td>0</td>
</tr>
<tr>
<td>100(4)</td>
<td>0</td>
<td>110(6)</td>
<td>0</td>
<td>001(1)</td>
<td>1</td>
</tr>
<tr>
<td>110(6)</td>
<td>0</td>
<td>011(1)</td>
<td>1</td>
<td>101(5)</td>
<td>0</td>
</tr>
<tr>
<td>000(0)</td>
<td>1</td>
<td>100(4)</td>
<td>0</td>
<td>010(2)</td>
<td>1</td>
</tr>
<tr>
<td>010(2)</td>
<td>0</td>
<td>101(7)</td>
<td>0</td>
<td>110(6)</td>
<td>0</td>
</tr>
<tr>
<td>100(4)</td>
<td>0</td>
<td>110(2)</td>
<td>1</td>
<td>011(3)</td>
<td>1</td>
</tr>
<tr>
<td>110(6)</td>
<td>0</td>
<td>111(5)</td>
<td>0</td>
<td>111(7)</td>
<td>0</td>
</tr>
<tr>
<td>000(0)</td>
<td>1</td>
<td>000(0)</td>
<td>1</td>
<td>011(3)</td>
<td>1</td>
</tr>
</tbody>
</table>

Phase truncation is an important aspect of DDS architectures. Consider a DDS with a 32-bit phase accumulator. To directly convert 32 bits of phase to corresponding amplitude would require 2^{32} entries in a lookup table. That is 4,294,967,296 entries. If each entry is stored with 8-bit accuracy, then 4-Gigabytes of lookup table memory would be required. Clearly, it would be impractical to implement such a design.

Hence the solution is to use a fraction of the most significant bits of the accumulator output to provide phase information. For example, In a 32-bit DDS design, only the upper most bits might be used for phase information. The lower bits would be ignored (truncated) in this case. To understand the
implications of truncating the phase accumulator output it is helpful to use the concept of the “digital phase wheel”.

The continuous-time sinusoidal signals have a repetitive angular phase range of 0 to 360 degrees. The counter’s carry function allows the phase accumulator to act as a phase wheel in the DDS implementation, as shown in Figure 1.2. To understand this basic function, consider the sine-wave oscillation as a vector rotating around a phase circle. Each designated point on the phase wheel corresponds to the equivalent point on a cycle of a sine wave. As the vector rotates around the wheel, visualize that the sine of the angle generates a corresponding output sine wave. One revolution of the vector around the phase wheel at a constant speed, results in one complete cycle of the output sine wave. The phase accumulator provides the equally spaced angular values accompanying the vector’s linear rotation around the phase wheel. The content of the phase accumulator corresponds to the points on the cycle of the output sine wave (DDS Technical Tutorial 1999).

![Figure 1.2 Digital phase wheel](image)
1.5 FREQUENCY TUNING

A sine wave is generally expressed as \(x(t) = \sin(\omega t) \) which is non-linear and is not easy to generate, except through constructing it from pieces. However, the angular information is linear because the phase angle rotates through a fixed angle for each unit of time. Thus, the angular rate depends on the frequency of the signal described as \(\omega = 2\pi f \) where \(\omega \) is the angular frequency. As shown in Figure 1.3, the phase increases linearly from 0 to \(2\pi \) over one complete cycle of the sine wave.

\[
\text{Figure 1.3 Representation of sine magnitude and phase}
\]

The phase of a sine wave is linear and that it depends on a reference clock period, with clock frequency \((f_{c\text{clk}}) \), the phase rotation \((P_r) \) for that period can be determined by

\[
P_r = \omega \Delta t \tag{1.2}
\]

Where \(P_r \) is change in phase of sine wave, \(\omega \) = angular frequency of wave, \(\Delta t \) is small change in time. Solving for \(\omega \) in Equation (1.2), gives

\[
\omega = \left(\frac{P_r}{\Delta t} \right) = 2\pi f \tag{1.3}
\]
The phase accumulator clocked with f_{clk} generates the phase value sequence, where Δt is the minimum amount of change of time

$$f_{clk} = \frac{1}{\Delta t}$$ \hspace{1cm} (1.4)

Solving from Equation (1.3) and substituting the reference clock frequency for the reference period in Equation (1.4), specifies the frequency of the output signal

$$f_{out} = \frac{P_r f_{clk}}{2\pi}$$ \hspace{1cm} (1.5)

Finally, for an n-bit accumulator the output signal will have the frequency specified

$$f_{out} = \frac{P_r f_{clk}}{2^n}$$ \hspace{1cm} (1.6)

Where P_r is the phase increment word. f_{clk} is the clock frequency and ‘n’ is the length of accumulator.

This phase value P_r is generated using the modulo 2^n overflowing property of an n-bit PA. P_r is an integer, therefore the frequency resolution (fr) is found by setting $P_r = 1$,

$$f_r = \frac{f_{clk}}{2^n}$$ \hspace{1cm} (1.7)

If the DDS output frequency is increased, the number of samples per waveform cycle decreases. As the output frequency f_{out} is increased, the number of samples per (sinusoid) cycle decreases.
1.6 DDS DESIGN FEATURES

The current SDR implementations mostly rely on reconfigurable hardware to support a particular standard or waveform while the algorithms and the various setups for other waveforms are stored in memory. Although application-specific integrated circuits lead to the most efficient implementation of a single-standard radio, the same cannot be said when addressing a multi-mode multi-standard device. The ASIC is a very complex approach in terms of implementation and inefficient in terms of cost and power consumption (Rouphael 2009). The present work might be a solution which is obtained using Xilinx Spartan FPGA to develop the novel DDS architecture.

1.6.1 FPGA Design Methodology

FPGA devices are an important component in many modern devices. It is important that VLSI designers must have a thorough knowledge of optimizing designs for FPGAs. When using an FPGA it is common to use VHDL or VerilogHDL to describe the functionality of the FPGA. Specialized software tools are used to translate the HDL source code into a configuration bit stream for the FPGA. It instructs the configurable elements in the FPGA.

Traditionally, FPGA consists of two main parts: routing and Configurable Logic Blocks (CLB). A CLB typically contains a small amount of logic that can be configured to perform Boolean operations on the inputs to the CLB block. The logic can be constructed by using a small memory that is used as a lookup table. This is often referred to as a LUT. The logic in the CLB block is connected to a small number of flip-flops in the CLB block. The CLBs are also connected to switch matrices that in turn are connected to each other using a network of wires.
A structure of a traditional FPGA is shown in Figure 1.4. In reality, present FPGAs are much more complex and a number of optimizations have been done to improve the performance of design components. In Xilinx FPGAs, a CLB is further divided into slices. A slice in most Xilinx devices consists of two LUTs and two flip-flops. There is also special logic in the slice to simplify common operations like combining two LUTs into a larger LUT and creating efficient adders.

![Figure 1.4 Structure of a FPGA](image)

The Xilinx FPGA design flow consists of the following steps:

Synthesis : Translate RTL code into LUTs, flip-flops, memories, etc.

Mapping : Map LUTs and flip-flops into slices.

Place and route : First decide where all slices, memory blocks, etc. should be placed in the FPGA and then route all signals that connect these components.
Bit file generation : Convert the net list produced by the place and route step into a bit stream that can be used to configure the FPGA.

FPGA Configuration : Download the bit stream into the FPGA.

A static timing analyser tool can be used to determine the critical path of a present design. It can also be used to make sure that a design is meeting the timing constraints but it’s seldom necessary as the place and route tool will usually give a warning if the timing constraints are not met. There are special tools available to inspect and modify the design. A floor planning tool allows a designer to investigate the placement of all components in a design and change the placement if necessary. FPGA editing tool can be used to view and edit the exact configuration of a CLB and other components in terms of logic equations for LUTs, flip-flop configuration, etc. It will also show how signals are routed in the FPGA and can also change the routing if necessary.

1.7 SPARTAN FPGA FEATURES

The Spartan family of Field-Programmable Gate Arrays is specifically designed to meet the needs of high volume, cost-sensitive consumer electronic applications. Spartan family is based on a 90nm, eight layer metal processes, with densities up to 74K logic cells (LCs) and up to 1.8 Mbits of embedded RAM, with dedicated 18 × 18 multipliers, up to 4 Digital Clock Managers (DCM), and high-speed, versatile external RAM interface. Spartan devices support differential and single-ended I/O standards.

The Spartan-6 LX45 is optimized for high performance logic and offers:
• 6,822 slices, each containing four 6-input LUTs and eight flip-flops
• six phase-locked loops
• 58 DSP slices
• 500MHz clock speeds

1.8 OPTIMIZING A DESIGN FOR FPGAS

(i) High-Level Optimization

The simple way to increase the performance in FPGAs is adding pipeline-stages. It is usually a special area efficient in FPGAs. Another way to improve the performance of an FPGA is by utilizing all capabilities of the embedded memories. In FPGAs, the basic memory block primitive is usually dual-ported by default as it will simplify an algorithm. Similarly, each memory block in an FPGA has a fixed size.

(ii) Low level optimization

In the high level optimizations the performance obtained is not satisfactory as it is not possible to fine-tune the architecture for a certain FPGA. In low level optimization the design can be fine tuned to make sure that the algorithms are mapped to the FPGA in such a way that adders can be efficiently combined with other components such as multiplexers and gates while keeping the number of logic levels low.
(iii) **Placement Optimizations**

If the required performance is not reached through either high or low level logic optimizations it is usually possible to gain more performance by floor planning.

1.9 **FPGA DESIGN FLOW**

In a typical design flow, FPGA application developer will simulate the design at multiple stages throughout the design process. Initially the RTL description in VHDL or Verilog HDL is simulated by creating test benches to stimulate the system and observe results.

Then, after the synthesis engine is mapped the design to a net list, the net list is translated to a gate level description where simulation is repeated to confirm the synthesis proceeded without errors. Finally, the design is laid out in the FPGA at which point propagation delays are added and the simulation is run again with these values back-annotated onto the net list.
Figure 1.5 Implementing logic design on FPGA

VHDL Source Code

```vhdl
entity led2d is
  port(
    d: in std_logic_vector(3 downto 0);
    c: out std_logic;
    s: out std_logic_vector(2 downto 0);
  );
end;

architecture led2d_arch of led2d is
begin
  s <= "110111" when d="0000" else "0010010" when d="0001" else "1101101";
end led2d_arch;
```
1.10 ORGANIZATION OF THESIS

This thesis is organized as follows.

CHAPTER 1 : Problem formulation, Motivation and Objectives for the present research work are clearly stated. Literature survey is extensively discussed.

CHAPTER 2 : Implementations of Pipelined Carry Look Ahead Phase Accumulator and ROM Look up Table for DDS architecture are described. The performance of Pipelined DDS architecture is compared with Non-pipeline DDS. Implementation and simulation results are discussed.

CHAPTER 3 : Hybrid Wave pipelining Technique for Phase Accumulator has been explained. Comparison with conventional pipeline and hybrid wave pipeline scheme is also provided.

CHAPTER 4 : Comparison of different CORDIC architectures has been analyzed. HWP CORDIC algorithm technique to improve area efficiency is presented.

CHAPTER 5 : HWP based DDS architecture is implemented on to the reconfigurable hardware and results are discussed. Performance of various DDS architecture are compared and analyzed.

CHAPTER 6 : Conclusion and the directions for the future work is presented and followed by references are listed.