The study of relevant literature is an essential step to get a clear idea of what has been done with regard to the problem under study. Such a review brings about deep and clear perspective of the overall field. For any specific research project to occupy a place in the development of discipline, the researcher must be thoroughly familiar with both previous theory and research.

The literature related to any problem helps the scholar to discover what is already known, which could enable the investigator to have a better understanding of the chosen problem and various factors connected with the study. So, number of books, journals and websites were referred. The review of related literature has been classified under the following headings.

1. Studies on yoga practices on physical variables
2. Studies on yoga practices on physiological variables
3. Studies on swissball training.

1. Studies on yoga practices on physical variables

G. Sokkanathan, and R. Selvakumar, (2011) examines the effect of selected yogic practice on muscular endurance of school children. Sixty male subjects were selected from Madurai District and their age ranged from 14 to 15 years. The subjects were divided into control and the experimental group. The experimental group underwent selected asanas and pranayama practice weekly five sessions for twelve weeks. Control group did not participate any training programme except their regular work. Muscular endurance was measured before and after the training period by using bent knee sit ups. Analysis of Co-variance was applied to testing the significant difference between the pre and post test. They concluded in their result the yogic practice group significantly improved muscular endurance when compared with the control group after the experimental period.

Tran et al., (2007) determine the effects of hatha yoga practice on the health-related aspects of physical fitness such as muscular strength and endurance,
flexibility, cardio respiratory fitness, body composition, and pulmonary function. For this study purpose nine female and one male were voluntarily participated in eight weeks yoga practice, which include two training session in a week. The subjects’ age ranged from 18 to 27 years. One yoga session include 10 minutes pranayama, 15 minutes of dynamic warm-up exercises, 50 minutes of asanas and 10 minutes of relaxation. After 8-weeks of training program the selected variables such as iso-kinetic muscular strength for elbow extension, elbow flexion, and knee extension increased by 31%, 19%, and 28%, respectively, whereas isometric muscular endurance for knee flexion increased 57%. Ankle flexibility, shoulder elevation, trunk extension, and trunk flexion increased by 13%, 155%, 188%, and 14% respectively. From these findings the researcher concluded that regular hatha yoga practice can bring out improvements in the health-related aspects of physical fitness.

O. Ulger, and N.V. Yaglı, (2011) investigate the effects of yoga on balance and gait properties in women with musculoskeletal problem. For this study purpose twenty seven women were selected and the subject having osteoarthritis and low-back pain, they are in the age group of 30-45 years. The subjects were participated in 4 weeks yoga program, twice a week, which included asanas, stretching exercises, and breathing techniques. Static balance and gait parameters were determined prior to and following the study. The results revealed that yoga has a positive effect on balance and gait parameters of women with gait and balance disturbances that are caused by musculoskeletal problems. From the results they concluded that asanas and stretching exercises brought a positive effect on the body, and therefore it is probable to use yoga programs to overcome problems caused by musculoskeletal disorders.

Fillmore, et al., (2010) documented the effects of yoga interventions on balance, flexibility, and strength in adolescent girls 14 to 18 years. By using Quasi-experimental and nonrandomized design 33 female adolescents were selected and underwent yoga training 2 sessions per week and a walking program 3 session per week, for a duration of 7 weeks. The instructor-led group received instruction from a registered yoga therapist in person, while the video-led group watched a tape of the instructor-led session. The following variables were tested before and after the training program such as weight, hamstring flexibility, body fat, strength, and balance. There was a significant difference for range-of-motion right (P=0.034) and range-of-
motion left ($P=0.036$) as measured by the 90/90 hamstring flexibility test. There were no significant differences between the instructor- and video-led groups for any of the measured variables. They concluded that yoga may be a useful addition to therapy programs and give a method to stay this age group interested in exercise.

Schmid, et al., (2010) determine whether fear of falling (FoF) and balance improved after a 12-week yoga intervention among older adults. 14 adults were selected over 65 years and took part 12 week yoga program. The yoga sessions consists of both physical postures and breathing exercises. They measured FoF, balance, Upper- and lower-body flexibility. The results showed that FoF decreased by 6%, static balance increased by 4% ($P<0.045$), and lower-body flexibility increased by 34%. From the study results they concluded that yoga may be a hopeful intervention to manage FoF and improve balance, thus reducing fall risk for older adults. Rehabilitation therapists may wish to look at yoga as a modality for balance and falls programming; however, further research is needed to verify the use of yoga in such programming.

Fillmore et al., (2004) conducted a study to determine the effect of yoga postures on flexibility, balance and coordination in typically developing children. Ten 5-8 year old children selected for the study. The selected subjects were randomly divided into two groups. One group participated in 60-minute yoga session once a week and other group act as control group continued with their typical schedule for duration of twelve weeks. Balance, coordination and flexibility were tested before and after the training period. After the experimental period the yoga group improved in three of the six measurement areas with improvements ranging from 1.2% in the sit and reach test to 14.3% in coordination. The control group improved in four of the six measurement areas with improvements ranging from 10.5% in the sit and reach test to 26.5% in coordination. They conclude that the present study did not provide evidence for the use of yoga with typically developing children. The well-known limitations and problem areas could assist other researchers in mounting future studies to evaluate the efficiency of yoga postures in children.

Rathore Vishan Singh, (2012) investigates the effect of yoga exercise on selected physiological and motor fitness component of National sub-junior volleyball players. 24 junior national volleyball players were randomly selected from
Chhattisgarh and their age ranged from 12 to 16 years. The subjects were participated yoga training programme 4 days per week for duration of 12 weeks. Resting heart rate, flexibility, hemoglobin and explosive strength were measured before and after a 12 week of training duration. T test was used to test the significant difference between the groups. Yogic exercise intervention showed significant effect on physiological variables. He concluded that Resting heart rate and hemoglobin and flexibility, explosive strength, with the help of yogic practice elasticity of muscle improve and improve range of motion. Muscle stretching consequently develops elastic resistance. This is effects is the mechanism in the muscles contribution to contractile force.

Gaurav Vishaw, (2011) examines the effects of hatha yoga training on health related physical fitness variables including muscular strength, agility, power, speed and cardiovascular endurance. 18 –24 years 30 male students were selected from department of physical education, Guru Nanakdev University. Subjects were divided into experimental and control group, 15 subjects in each group. The experimental group underwent 8-week hatha yoga training programme. Each yoga session consisted of 10 minutes of pranayamas, 15 minutes of dynamic warm-up exercises, 40 minutes of asanas and 5 minutes of supine relaxation in savasana. T-test was applied to test the difference between initial and final readings. Results showed that the health related physical fitness variables significantly improved in experimental group compared with the control group. He concluded that 8 weeks of hatha yoga practice can significantly improve multiple health-related aspects of physical fitness in young, healthy, predominantly female subjects. These data provide more evidence to support the beneficial effect of hatha yoga for improving the health-related physical fitness variables.

Jeffrey & Scott, (2003) evaluates the effectiveness of a ten-week, yoga-based, home-exercise program on the flexibility of older women. Thirty aged females participated in this study. Subjects were tested on trunk flexion (tf), trunk extension (te), shoulder flexion (sf), and right and left ankle flexibility (rankle and lankle). According to their activity level divided in to two groups. The experimental group participated 30 minutes practice, for four days per week. The other group acted as the control. Manova repeated measures were used as statistical analysis for testing the
significant difference between two groups after training period. Flexibility increased in the treatment group and decreased in the control group. Using ANOVA, only time differed significantly over time (p < .001). Group by time effects were significant for all dependent variables. They concluded that home-based yoga exercise may be beneficial for older women seeking to improve flexibility.

Chen, et al., (2008) conducted a pilot study on the health promotion effects of a silver yoga exercise program for female seniors. 16 community-dwelling female seniors were selected for the study by using a one-group, pre-post test design. The silver yoga program was conducted three times per week, 70 minutes per session, for four weeks. Data were collected at prior to and after completion of the experimental period. From the results indicated that participants' body fat percentage and systolic blood pressure decreased, balance and range of motion on shoulder flexion and abduction improved, and sleep disturbance was minimized (all p < .05). They concluded that the silver yoga exercise program provides positive effects on the promotion of good health in female seniors living in the communities.

Tran, et al., (2001) investigates the effects of hatha yoga practice on the health-related aspects of physical fitness. Ten healthy, untrained volunteers (nine females and one male), were selected as subjects, their age ranged from 18-27 years. Muscular strength and endurance, flexibility, cardio respiratory fitness and body composition were selected as variables for the study. Subjects were participate two yoga classes per week for a duration of 8 weeks. Each yoga session consisted of 10 minutes of pranayamas, 15 minutes of dynamic warm-up exercises, 50 minutes of asanas and 10 minutes of supine relaxation in savasana. Isokinetic muscular strength for elbow extension, elbow flexion, and knee extension increased by 31%, 19%, and 28% respectively, whereas isometric muscular endurance for knee flexion increased 57%. Ankle flexibility, shoulder elevation, trunk extension, and trunk flexion were increased there after the training period.

L.B. John Walsakom, (2000) examines the response of selected asanas on balance, flexibility, muscular endurance and reaction time among school boys. Thirty school boys were selected from Pondicherry and their age ranged from 10 to 15 years. The subjects were uniformly divided into control and experimental group. The experimental group underwent selected asanas practice for one hour duration for ten
weeks. Balance, flexibility, Muscular endurance, and reaction time were tested by using stork stand, sit and reach test, bent knee sit ups, nelson hand stick respectively. The collected data on initial and final test were tested by using Analysis of Covariance (ANCOVA). He concluded that all the selected variables shows significant improvement after the ten weeks of training period.

T.L. Chen, et al., (2009) examines the effects of yoga exercise intervention on health related physical fitness in school-age asthmatic children. 31 voluntary children (exercise group 16; control group15) were purposively sampled from one public elementary school in Taipei County. The selected subjects’ age ranged from 7 to 12 years. The yoga program was practiced by the experimental group three times per week for duration of 7 weeks. The 60 minute yoga program includes 10 minutes of warm-up and breathing exercises, 40 minutes of yoga postures, and 10 minutes of cool down. Selected subjects were tested initial, final and follow up program on fitness variables such as BMI, flexibility, muscular strength, and cardio pulmonary fitness. The experimental group showed significant change on selected physical fitness after the training period.

M. Venkatareddy, et al., (2003) conducted the study on the effect of yoga on weight and fat fold thickness among obese women. 30 obese women were selected according to their body mass index and divided into two groups. Group I consist of BMI greater than 35 and group II consist of BMI 25-35. Obese women age ranged from 19-53 years. Subjects were underwent one-hour practice of asanas and pranayama in the morning for the duration of 90 days. A significant reduction in BMI was examined after the training period both groups. When comparing the two groups, I group had better reduction in BMI (BMI greater than 35) the II group (BMI 25-35).

Studies on Yoga Practices on Physiological Variables

Sreenimirugan, Selvakumar, and Jeyaveerapandian, (2011) examines the effect of selected yogic practices on body composition of college students. Sixty male college students were selected as subjects from Madurai District and their age ranged from 18 to 21 years. The subjects were equally divided into the control and the experimental group. The experimental group underwent selected yoga practice
five days per week for duration of twelve weeks. Body composition was measured before and after the training period by using skin fold caliper. Analysis of Covariance was applied to test the difference between collected data on the two groups. Body composition was significantly improved after twelve weeks of yogic practices when compared with the control group.

K.M. Manimakali, and S. Chitra, (2011) has made a study on the effect of yogasanas practice on flexibility among university women. Thirty healthy female students were selected as subjects from various departments in Annamalai University. Subject age ranged from 18 to 25 years. The subjects were divided into control and experimental groups. The experimental group participated in selected asanas practice for five days per week for duration of eight weeks. Flexibility was measured before and after the training period by using sit and reach box. Analysis of Co-variance was used to test the difference between initial and final data on flexibility. Significant improvement was found after the eight weeks yogic practice than control group.

R. Komathi and M. Kalimuthu (2011) investigates the effect of yogic practices on abdominal strength among school boys. Forty subjects were selected from A.R.R Matriculation higher secondary school and their age ranged from 15 to17 years. The subjects were divided into control and the experimental group. The experimental group underwent selected asanas and pranayama for five days per week for duration of twelve weeks. Control group did not participate in any training programme except their regular work. Sit up was administered before and after the training period for measuring abdominal strength for both groups. The results of initial and final data were tested by using Analysis of Covariance. They found significant improvement on abdominal strength after the twelve weeks yogic practice group than the control group.

K. Bharatha Priya and R. Gopinath, (2011) examines the effect of yogic practice on flexibility among school boys. Forty subjects were selected from A.R.R Matriculation higher secondary school and their age ranged from 15 to17 years. The subjects were divided into control and experimental groups. The experimental group underwent selected asanas and pranayama for five days per week for twelve weeks, control group did not participate in any training programme. Subjects were tested
flexibility before and after the training period by using sit and reach box. Analysis of Co-variance was applied to test the significant difference between the groups. They concluded that flexibility was significantly improved after twelve weeks yogic practice than control group.

Sugumar (2011) conducted a study on the effect of yogic practices on body composition among the college men students. Thirty healthy untrained male subjects were selected from various Departments of Gandhigram Rural Institute, Dindigual and their age ranged from 18 to 25 years. The subjects were equally divided into control and the experimental groups. The experimental group underwent selected asanas and pranayama practice for five days per week for duration of six weeks. Control group did not participate any training programme rather than their regular work. Before and after the training period all subjects were tested on body composition by using BIA method in the three sites. The results were analyzed by using Analysis of Co-variance. Body composition was significant improved after six weeks yogic practice than control group.

F.J. Schell, B. Allolio, and O.W. Schonecke, (1994) examines Hatha-Yoga practice on physiological and psychological variables. Female subjects were tested on heart rate, blood pressure, the hormones cortisol, prolactin and growth hormone and certain psychological parameters in a yoga practicing group and a control group during the experimental period. There were no substantial differences between the groups concerning endocrine parameters and blood pressure. The course of heart rate was significantly different; the yoga group had a decrease during the yoga practice. Significant differences between both groups were found in psychological parameters.

Jaykishan Santoshi, (2010) conducted a study on the effects of Calisthenics and Yogic exercises on selected Physical and Physiological variables. 120 male were randomly selected from Yogashastra College, their age ranged from 18 to 22 years. Based on their initial performance subjects were divided in into four groups. Group-A underwent calisthenics exercise, Group-B underwent yogasana practice, Group-C combined group, (calisthenics and yogasana group), Group-D control group. Training was given for one hour daily for six days a week for a period of twelve weeks. There were no significant differences on selected physiological variables such as blood pressure and pulse rate. He concluded that combined group of Calisthenics
and Yogasanas are the best in improving the physical and physiological fitness of male students. So the training of calisthenics and yogasana both can be considered as good aides for maintaining fitness.

Pal, et al., (2011) observes the effect of regular yogic practices and self-discipline in reducing body fat and elevated lipids in CAD patients. For the study 170 coronary artery disease patients were randomly selected as subjects include both sexes from Department of Cardiology. Subjects were divided into yoga group and non-yoga group, eighty five (85) in each group. Training was given 35-40 min/day, five days in a week for duration of six months. Body fat testing and estimation of lipid profile were tested of the both groups before and after the training period. The results showed significant change on the selected variables such as BMI (p < 0.04), fat % (p < 0.0002), fat free mass (p < 0.04), SBP (p < 0.002), DBP (p < 0.009), heart rate (p < 0.0001). They concluded that reduction of all selected variables after regular yogic practices is beneficial for cardiac and hypertensive patients. Therefore yogic practices included in this study are helpful for the patients of coronary artery disease.

Telles, S. et al., (2010) observes short term health impact of a yoga and diet change program on obesity. For this study 47 subjects were selected and underwent six days residential yoga program. They were tested body mass index (BMI), waist and hip circumferences, mid-arm circumference, body composition, hand grip strength, postural stability before and after one week yoga program. Subjects practiced yoga for 5 hours every day and had a low fat, high fiber, vegetarian diet. The collected data were compared by using t-test. After 6-day residential program, participants showed a decrease in BMI (1.6 percent), waist and hip circumferences, fat-free mass, total cholesterol (7.7 percent decrease), and an increase in postural stability and hand grip strength (p<0.05, all comparisons). They concluded that 6 day yoga and diet change program decreased the BMI and the fat-free mass. This suggests that a brief, intensive yoga program with a change in diet can pose certain risks.

Kumari, et al., (2011) conducted a research on the effect of intervention of yoga therapy in obese individuals. 40 obese male female were participated the study from MRPL ladies club auditorium in the MRPL Township. The variables selected
for the current study were Body weight, Body Mass Index, Blood sugar, MDA level and Total antioxidant status was tested before and after one month of yoga therapy. The paired t-test was used to test the significant difference. The result shows that there was significant decline in the Body Weight (p=0.020), BMI (p=0.000), Fasting Blood Sugar (p=0.03) and Post Blood Sugar (p=0.000) MDA (p=0.000) and significant increase in Total Antioxidant Level (p=0.021) after yoga when compared to that before the yoga therapy. They concluded that Yoga therapy is beneficial in maintaining better health by regulating BMI, Oxidative status by improving the biochemical functions of the body and helpful to overcome the complications of obesity.

Seo, et al., (2012) tested the effect of an 8-week of yoga-asana training on body composition, lipid profile, and insulin resistance (IR) in obese adolescent boys. 20 volunteers with body mass index (BMI) greater than the 95th percentile were randomly assigned to yoga (age 14.7±0.5 years, n=10) and control groups (age 14.6±1.0 years, n=10). The experimental group performed exercises three times per week at 40~60% of heart-rate reserve (HRR) for 8 weeks. After training period the selected variables such as body weight, BMI, fat mass (FM), and body fat % (BF %) were significantly decreased, and fat-free mass and basal metabolic rate were significantly increased than control. They concluded that an 8-week of yoga training improves body composition and TC levels in obese adolescent boys, suggesting that yoga training may be effective in controlling some metabolic syndrome factors in obese adolescent boys.

J. Ganabakthan, (2012) investigates the effects of the selected Yogic practices of Swami Satyananda Saraswati (Group A) and Swami Kuvalayananda (Group-B) on Police men with Health fitness components, Physiological and Psychologically. 90 Police men were selected as subjects from Tamil Nadu Police Academy, Chennai. Their age ranged between 30 to 45 years. Experimental group underwent yogic practices for duration of Twelve weeks. The pre and post test was recorded on the selected Health fitness components (Endurance, Strength, Flexibility, and Body composition), Physiological and Psychological variables for three groups. The collected data were tested by applying Analysis of Covariance, Scheffe’s post hoc test was used to test paired mean differences among the groups. All the selected
variables showed the significant improvement after the training period.

Studies on Swissball Training

Eltanahi Nagla (2011) has made a study on the effect of Swiss ball exercises on the abdominal, back and leg muscles strength, hip and spine flexibility, static and dynamic balance and Vital Capacity in addition to their relationship of Gankaku Kata performance level. 12 Women Karateka students were selected from Zagazig University, their age ranged from 18-20 years. karate first- team participated in 8 weeks Swiss Ball exercises. The selected tests were Sit- Up legs- straight, Back Lift Strength, leg lift strength, flexibility, Trunk Extension Flexibility, stork Stand, Modified Bass Test of Dynamic Balance and Vital Capacity Tests, Five Judges accredited by the Egyptian Federation of Karate evaluated the performance of the player before and after the training period. Results showed significant differences between the two measures of physical and physiological variables with improvement of Gankaku Kata performance.

Nashwa Mohamed Helmy Abdel Aty Ezzat, (2011) has conducted a research on the effect of Swiss ball exercises on some motor abilities, test of description of physical condition and the level of performance of some essential skills in fencing between pre-within and post-measurements. 30 girls in the 1* grade at Faculty of Physical Education for Girls, Cairo were selected as subjects and divided into two equal groups such as experimental and control group. The selected variables are Motor abilities such as Motor speed, Two arms strength, Two legs strength, Flexibility, Endurance, Coordination, Spinal cord flexibility, Accuracy etc. The results showed that the suggested training program by using Swiss ball exercises led to positive effect on all variables of motor abilities, test of description of physical condition and the level of skill performance of some essential skills in fencing.

Sekendiz, B., Cug, M., and Korkusuz F., (2010) found out the effects of Swiss-ball core strength training on trunk extensor and lower limb extensor, muscular strength, abdominal, lower back and leg endurance, flexibility and dynamic balance in sedentary women. Twenty one subjects were selected and trained for one hour, five days per week for the duration of twelve weeks. Multivariate analysis used to test the pre and post test difference and it shows that there were a significant difference
between the initial and final data after twelve weeks of swissball training. The researchers concluded that swissball training will improve the body flexibility and abdominal strength in the sedentary individuals.

Marshall P.W.M., Murphy, B.A. (2006) investigates muscle activity using surface electromyography of upper-body and abdominal muscles during the concentric and eccentric phases of the bench press on and off a swiss ball. 14 subjects resistance-trained who performed isolated concentric and eccentric bench press repetitions using the 2 test surfaces with a 2-second cadence at a load equivalent to 60% maximum force output. The average root mean square of the muscle activity was calculated for each movement, and perceived exertion during the tasks was collected using a Borg Scale. Deltoid and abdominal muscle activity improved due to swissball workout. These results provide scientific proof for anecdotal reasoning after swiss ball use as a potential core strength training device.

Stanton et al., (2004) investigates the effect of a short-term Swiss ball training on core stability and running economy. For this study purpose Eighteen young male athletes were selected divided into a control (n = 10) and experimental (n = 8) groups. Athletes were assessed prior to and following the training program for stature, body mass, core stability, electromyographic activity of the abdominal and back muscles, treadmill VO$_{2}$max, running economy, and running posture. The experimental group practiced 2 Swiss ball training sessions per week for the duration of six week. The results revealed a significant effect of Swiss ball training on core stability in the experimental group ($p < 0.05$) when compared with control group. There was no significant effect on other selected variables. It emerge Swiss ball training may positively affect core stability without concomitant improvements in physical performance in young athletes.

Carter et al., (May 2006) examines the effects of SBT on SS. Twenty sedentary people were randomly selected and divided in to an experimental and control groups. The experimental group performed SBT twice per week for a duration of 10 weeks. The pre and post test were recorded on the selected variables such as static back-endurance and back endurance and statistically analyzed by using analysis
of variance (ANOVA) with repeated measures. The result shows significant effect on the spinal stability on experimental group than control group. These findings point out that SBT may provide improvements in SS within this population. Practitioners might use SBT exercises where the position of the spine is maintained during the early phases of back-pain prevention programs. Swissball exercise are beneficial to improving individuals fitness and reduce back pain.

Sukalinggam et al., (June 2012) evaluate the effectiveness of short-term stability ball (SB) training on males and females by comparing the strength changes produced in the core muscles. Forty-two untrained subjects were selected for this study and their age was ranged from 20 to 25. Initially subjects were tested their back strength and abdominal strength on both sex. The selected subjects were randomly divided into three groups such as unstable SB group (n = 14), stable floor group (n = 14) and control group (n = 14). SB training showed most improvement (p < 0.001) in back and abdominal strength (25.79 % and 29.51 % respectively), compared with the stable floor group. Trained female subjects achieved a higher percentage of improvement in strength compared to males in both back and abdominal muscles. They concluded that performing core training exercises on unstable surfaces stressed the musculature, possibly activating the neuro-adaptive mechanisms that led to the early phase gains in strength.

Seo et al., (2012) examines the effect of Swiss ball exercise program for elderly females on physical fitness and balance ability in order to offer basic data for the development of an exercise program to improve the quality of life and promote the health of elderly females. Sixty-five elderly women were selected as subjects and their age was above 78 years. The subjects were divided into exercise group and control group. The exercise group (n=38) practiced Swiss ball exercise program for twice a week for a duration of 12 weeks. Swiss ball exercise program includes 12 types of exercises related to balance. Physical fitness and balance were evaluated before and after the training program. The results showed a significant increase in the physical fitness and balance ability of the exercise group when compared with the control group. They concluded that Swiss ball exercise program had a positive effect on physical fitness and balance ability of elderly women. They consider that the ball
exercise is easy, safe and interesting to use will encourage the elderly active participation in exercise.

Cug Mutlu (Feb 2012) investigates the effects of Swiss ball training on (1) knee joint reposition sense (knee proprioception), (2) core muscle strength and (3) dynamic balance in sedentary collegiate students. To examine the effect of Swiss ball training on knee proprioception and core strength, training was given for 3 days per week (Study 1, N=60). To test the effect of Swiss ball training on dynamic balance, training was given for 2 days per week (Study 2, N=47). Total 107 sedentary university students were undergone 10 weeks training program. The result showed that a significant effect on knee proprioception and core muscle strength after Swiss ball training. For dynamic balance both groups were improved significantly after the 10 week program. He concluded that a Swiss balls instability training program using body weight as resistance can give prolonged improvements in joint proprioception and core strength which would add to general health and performance.