# List of Figures

1.1 Showing the possible routes to crystal structure prediction.......................... 28
1.2 Diagrammatic summary of the lattice energy minimization approach to crystal structure prediction................................................................. 32
1.3 Planar projection of the molecular graph of molecules generated from a theoretical electron density. The small black dots denote the bond critical points................................................................. 46
1.4 Isosurface representation of electrostatic potential of Trinitrotoluene (TNT) molecule.................................................................................. 48
2.1 Chemical structure of some experimentally known high energetic molecules......................................................................................... 52
2.2 Chemical structure of some experimentally unknown nitrogen rich high energetic molecules................................................................. 53
3.1 Chemical structure of 2-Methyl-5-nitroamino-tetrazole................................. 55
3.2 Unit cell plots showing the similarity of (a) X-ray crystal structure and (b) the simulated crystal structure of MNAT................................. 57
3.3 The predicted structure of 2-Methyl-5-nitroamino-tetrazole (MNAT) molecule.......................................................................... 59
3.4 Deformation of electron density of 2-Methyl-5-nitroamino-tetrazole, showing its (a) N–NO₂ fragments and (b) tetrazole ring. Blue: positive contours; Red: negative contours are drawn at 0.05 eÅ⁻³ interval. The zero contours are dashed lines................................. 62
3.5 Laplacian of electron density of MNAT molecule, (a) Nitramine (-N–NO₂) fragment and (b) tetrazole ring. The positive contours are solid lines, negative contours are dotted lines. Contours are drawn in logarithmic scale, 3 x 2ᴺ eÅ⁻⁵, where N=2,4, and 8x10ⁿ, n=−2, -1,0,1,2 ......................................................................................... 64
3.6 Isosurface representation of electrostatic potential of the molecule lifted from the predicted crystal structure. Blue: positive potential of (0.5 eÅ⁻¹), Red: negative potential (-0.5 eÅ⁻¹), Green: zero potential.. 68
4.1 Chemical structure of 2, 4-Dinitrobenzoic acid (DNBA) molecule..... 71
4.2 Comparison of powder pattern of DNBA molecule, Black: X-ray, Red: IDEAL and Green: EXPTL................................................................. 74
4.3 Unit cell plots showing the similarity of (a) reported X-ray crystal structure and (b) simulated crystal structures (IDEAL)......................... 74
4.4 Plot of minima in the lattice energy of 2,4-Dinitrobenzoic acid (DNBA) found from MOLPAK search. The minima are denoted by the space group of the starting structure generated by MOLPAK...... 75
4.5 Molecular structure of predicted 2,4-Dinitrobenzoic acid (DNBA) molecule................................................................................................. 79
4.6 Deformation density maps of DNBA molecule. (a) Ring plane nitro group, (b) –C–NO₂ group and (c) Carboxyl group. The positive contours (blue) and negative contours (red) are drawn at 0.05 eÅ⁻³ interval. The zero contours are dashed lines................................. 83
4.7 Laplacian of electron density for DNBA molecule. The positive contours (solid lines) and negative contours (dotted lines) are drawn in logarithmic scale, 3 x 2ᴺ eÅ⁻⁵, where, N=2, 4, and 8x10ⁿ, n=−2, -1,0,1,2 ......................................................................................... 86
4.8 Isosurface representation of electrostatic potential of the molecule lifted from the predicted crystal structure. Blue: positive potential (0.5 eÅ⁻¹), Red: negative potential (-0.5 eÅ⁻¹), Green: zero potential. 87
4.9 Showing the relationship between $\nabla^2 \rho_{bcp}(r)$ and ESP at the bond mid points $V_{\text{mid}}$. ................................................. 89
5.1 Chemical structure of 2,6-Diamino-3,5-Dinitropyrazine-1-oxide....... 93
5.2 Molecular structure of 2,6-Diamino-3,5-Dinitropyrazine-1-oxide LLM-105 molecule. ................................................................. 95
5.3 Comparison of powder pattern of LLM-105 molecule, Red: X-ray and Blue: simulated.......................................................... 100
5.4 Unit cell plots showing the similarity of (a) reported X-ray crystal structure and (b) simulated crystal structure......................... 101
5.5 Deformation of electron density map of LLM-105 molecule. The positive contours (Blue color) and negative contours (Red color) are drawn at 0.05 eÅ⁻³ interval. The zero contours are green color........... 102
5.6 Showing the Laplacian of electron density distribution of simulated LLM-105 molecule. The positive contours are solid lines, negative contours are dotted lines. Contours are drawn in logarithmic scale, 3 x 2ⁿ eÅ⁻⁵, where N=2,4, and 8x10ⁿ, n=-2,-1,0,1,2................................. 103
5.7 Isosurface representation of electrostatic potential of the molecule lifted from the predicted structure. Blue: positive potential (0.5 eÅ⁻¹), red: negative potential (-0.5 eÅ⁻¹) and green: zero potential........................ 109
5.8 Showing the relationship between $\nabla^2 \rho_{bcp}(r)$ and ESP at the bond mid points $V_{\text{mid}}$................................................................. 111
6.1 Chemical structure of 4-Amino-3,5-dinitro-1H-pyrazole .................. 114
6.2 Comparison of powder pattern of 4-Amino-3,5-dinitro-1H-pyrazole (LLM-116) molecule, Blue: X-ray, Red: simulated......................... 116
6.3 Unit cell plots showing the similarity of (a) reported X-ray crystal structure and (b) simulated crystal structures............................. 116
6.4 Energy minimized structure of LLM-116 molecule.......................... 118
6.5 Deformation density map of LLM-116 molecule. The positive contours (Blue) and negative contours (Red) are drawn at 0.05 eÅ⁻³ interval. The zero contours are dashed lines........................................... 121
6.6 Laplacian of electron density for LLM-116 molecule. The positive contours are solid lines, negative contours are dotted lines. Contours are drawn in logarithmic scale, 3 x 2ⁿ eÅ⁻⁵, where N=2,4, and 8x10ⁿ, n=-2,-1,0,1,2................................................................. 123
6.7 Isosurface representation of electrostatic potential. Blue: positive potential, red: negative potential and Green: zero potential. The Isosurface has been plotted at ±0.5 eÅ⁻¹ .................................................. 127
7.1 Chemical structure of 2-Methyl-5-nitrotetrazole (MNT).................. 131
7.2 Unit cell plots showing the similarity of (a) reported X-ray crystal structure and the (b) simulated crystal structure........................ 134
7.3 Energy minimized structure of 2-Methyl-5-nitrotetrazole (MNT)..... 135
7.4 Deformation density map of MNT molecule. The positive contours (blue lines) and negative contours (red dots) are drawn at 0.05 eÅ⁻³ interval. The zero contours are green dashed lines..................... 137
7.5 Laplacian of electron density map of MNT molecule. The positive contours represented by solid lines and negative contours are dotted lines. The contour lines are drawn in logarithmic scale, $3 \times 2^N \text{eÅ}^{-5}$, where $N=2,4$ and $8 \times 10^n$, $n=-2,-1,0,1,2$.

7.6 Isosurface representation of electrostatic potential of the molecule lifted from the predicted crystal structure. Blue: positive potential (0.5 eÅ$^{-1}$), red: negative potential (-0.5 eÅ$^{-1}$) and green: zero potential.

8.1 Chemical structure of 4,4',5,5'-Tetranitro-2,2'-bi-1H-imidazole (TNBI).

8.2 Energy minimized structure of TNBI molecule at BLYP/6-311G** level.

8.3 Deformation density map of TNBI molecule. The positive contours are drawn as solid lines and the negative contours are dashed lines. The zero contours are dotted lines. The contours are drawn at 0.05 eÅ$^3$ intervals.

8.4 Theoretical molecular graph of the TNBI molecule in gas phase. Black, blue, red and grey spheres are showing the atomic positions. Small red and yellow spheres are showing bond (3,-1) and ring (3,+1) critical points in $\rho$.

8.5 The contour plot of Laplacian of electron density of TNBI molecule from BLYP/6-311G** method. Contours are drawn in logarithmic scale, $3.0 \times 2^N \text{eÅ}^{-5}$, where $N=2,4$, and $8 \times 10^n$, $n=-2,-1,0,1,2$. The positive contours are represented by solid lines and negative contours are dotted lines.

8.6 Isosurface representation of electrostatic potential of TNBI molecule. Blue regions indicate the electropositive and red indicates electronegative regions and green: zero potential. Isosurface values are $\pm 0.5 \text{eÅ}^{-1}$.

9.1 Chemical structure 2,4, 6-Trinitro-1,3,5-triazine (TNTA) molecule.

9.2 Optimized structure of TNTA molecule at MP2/6-311G* level.

9.3 Deformation electron density map of TNTA molecule (a) in the molecular plane and the (b) NO2 fragments. The positive (solid lines) and negative contours (dotted lines) are drawn at 0.05 eÅ$^3$ intervals. The zero contours are dashed lines.

9.4 The Laplacian of electron density of TNTA molecule. Contours are drawn in logarithmic scale, $3.0 \times 2^N \text{eÅ}^{-5}$, where $N=2,4$, and $8 \times 10^n$, $n=-2,-1,0,1,2$. Solid lines are representing positive contours; dashed lines are negative contours.

9.5 Isosurface representation of electrostatic potential of TNTA molecule. Blue: positive potential (+0.5 eÅ$^{-1}$), red: negative potential (-0.5 eÅ$^{-1}$) and green: zero potential.

9.6 Showing the relationship between $\nabla^2 \rho_{bcp}(r)$ and ESP at the bond mid points $V_{mid}$.

10.1 Chemical structures of different forms of (ring and linear) N$_{10}$ molecules.

10.2 Energy minimized structure of ring N$_{10}$ molecule at B3LYP/aug-cc-PVDZ level.
10.3 Deformation density of ring N_{10} molecule. The positive contours are drawn as solid lines and the negative contours as dotted lines. The zero contours are dashed lines. The contours are drawn at 0.05 eÅ^{-3} intervals................................................................. 180

10.4 Laplacian of electron density of ring N_{10} molecule from B3LYP/aug-cc-PVDZ method. Contours are drawn in logarithmic scale, 3 x 2^{N} eÅ^{-5}, where N=2,4 and 8x10n, n = -2,-1,0,1,2. Solid lines are representing positive contours; dashed lines are negative contours................................................................. 182

10.5 Energy minimized structure of linear N_{10} molecule at B3LYP/aug-cc-PVDZ level........................................................................................................... 184

10.6 Deformation density of linear N_{10} molecule. The positive contours are drawn as solid lines and the negative contours as dotted lines. The zero contours are dashed lines. The contours are drawn at 0.05 eÅ^{-3} intervals........................................................................ 186

10.7 Laplacian of electron density of linear N_{10} molecule from B3LYP/aug-cc-PVDZ method. Contours are drawn in logarithmic scale, 3 x 2^{N} eÅ^{-5}, where N=2,4 and 8x10n, n = -2,-1,0,1,2. Solid lines are representing positive contours; dashed lines are negative contours................................................................. 187

10.8 Isosurface representation of electrostatic potential of (a) ring and (b) linear N_{10} molecules. Blue: positive potential (0.5 eÅ^{-1}), Red: negative potential (-0.5 eÅ^{-1}), Green: zero potential................................. 191

11.1 Chemical structure of 2,4,6-Trinitro-2,4,6-triazahexane (ORDX) molecule....................................................................................................................... 194

11.2 Energy minimized structure of ORDX molecule at B3LYP/6-311G** method........................................................................................................ 197

11.3 Deformation electron density map (fragmented) of 2,4,6-Trinitro-2,4,6-triazahexane molecule. The positive contours (solid lines) and negative contours (dotted lines) are drawn at 0.05 eÅ^{-3}. The zero contours are dashed lines........................................................................ 201

11.4 The Laplacian of electron density of ORDX molecule. Contours are drawn in logarithmic scale, 3 x 2^{N} eÅ^{-5}, where N=2,4 and 8x10n, n = -2,-1,0,1,2. Solid lines are representing positive contours; dashed lines are negative contours................................................................. 203

11.5 Isosurface representation of electrostatic potential of ORDX molecule showing the electro positive (blue) and negative (red) regions and green: zero potential. The isosurface plotted at ±0.5 eÅ^{-1} values................................................................. 209

12.1 Chemical structure of 1,7-Dimethyl-1,3,5,7-tetranitrotrimethylene -tetraine (OHMX) molecule.......................................................................... 212

12.2 Energy minimized structure of OHMX molecule from B3LYP/6-311G** method........................................................................................................ 214

12.3 Deformation electron density map of OHMX molecule (fragmented). The positive contours (solid lines) and negative contours (dotted lines) are drawn at 0.05eÅ^{-3}. The zero contours are dashed lines........................................................................ 219
List of Figures

12.4 Laplacian of electron density map of 2,4,6-Trinitro-2,4,6-triazahexeptane (fragmented). The positive contours (solid lines) and negative contours (dotted lines) are drawn at $0.05 \text{eÅ}^{-3}$. The zero contours are dashed lines. Contours are drawn in logarithmic scale, $3 \times 2^N \text{eÅ}^{-3}$, where $N=2,4$ and $8 \times 10^n$, $n=-2,-1,0,1,2\ldots$......................... 221

12.5 Isosurface representation of electrostatic potential of OHMX molecule. Blue: positive potential; Red: negative potential and green: zero potential. The isosurface plotted at $\pm 0.5 \text{eÅ}^{-1}$ values................................................................. 225

12.6 Showing the relationship between Laplacian of electron density $V^2 \rho_{bcp}(r)$ and impact sensitivity $V_{\text{mid}}$ of all bonds........................................ 227

13.1 New computational strategy for high energetic materials design....... 237