Dedicated to my family

ACKNOWLEDGEMENTS
I express my sincere and warm gratitude to my research supervisor Prof. Dr. P. Kumaradhas, for suggesting various research problems and for the invaluable guidance during the course of research work. His perpetual energy and enthusiasm in research had motivated me in right direction. I specially thank him for his kind approach and constant encouragement. I also thank him for giving me an opportunity to work on different areas of research, which gave me confidence to work in different areas of research fields. I also thank him for his care and concern in my personal matters. I was delighted to interact with him by attending his lecture classes. He has been a constant source of inspiration for me with his dedication, commitment to science, boundless enthusiasm and up to date knowledge.

I am grateful to honorable Vice-Chancellors Prof. Dr. T. Balakrishnan (2005-2008), Prof. Dr. M. Thangarasu (2008-2010) and Prof. Dr. K. Muthuchelian (present) and respected Registrars Prof. Dr. G. Kunasekaran and Prof. Dr. S.G. Kunasekaran and Dr. K. Angamuthu for giving me an opportunity to do Ph.D in the university department. I also thank Prof. Dr. V. Krishnakumar, Head of the Department for his constant support and encouragement in various ways.

I express my sincere thanks to Defense Research and Development Organization (DRDO) for providing me the Junior Research fellowship (JRF) to carry out this research work reported here.

It’s my pleasure to thank Dr. S.N. Asthana (Associate Director, HEMRL, Pune) and Dr. Rajesh B. Pawar (Scientist, HEMRL, Pune) for providing their valuable suggestions during my research work at Periyar University.

I thank Dr. Subrata Chattopadhyay, Chief investigator GARUDA and all the technical staffs of C-DAC Knowledge Park, Bangalore for make use of the
Super-computing facility to carry out various high level quantum chemical calculations and for the useful discussions with them.

I am very thankful to abroad professors, Prof. Dr. H.L. Ammon, Prof. Dr. S.L. Price, Dr. D.W.M. Hoffmann, Prof. Dr. Adam Stash, Prof. Dr. J.S. Murray and Dr. T.A. Keith for providing their excellent scientific software and valuable discussions.

I thank Mrs. Margaret Rose Kumaradhas for the warmth hospitality during the course of my research work.

I cannot express my gratitude in more words in my undergraduate professors Dr. S. Seetharaman, Mr. M. Sreerangan, Mr. V. Balasubramaniyan and Mr. A. Poiyamozhi for the selfless help and constant encourage, which he has extended with ever smiling and willing attitude.

I am very much obliged my friend/senior Dr. A. David Stephen, Assistant Professor, Department of Physics, Sri Shakthi Institute of Engg. & Technology, Coimbatore, who encouraged me through moral support and ready to help me in all possible ways to bring out positive results in all my endeavors.

I am very thankful to all my labmates of Laboratory of Advanced X-ray crystallography as well as Laboratory of Bio-crystallography and Computational Molecular Biology, who are made it a convivial atmosphere to work. In particular, I would like to thank, Mr. G. Kandhakumar, Mr. K. Selvaraju, Mrs. G. Rajalakshmi, Ms. M. Jothi, Ms. B. Devipriya and Mrs. A. Renuga Parameshwari for their friendship, valuable help and support.

I am highly indebted to my beloved parents and brother Mr. P. Karthi for encouraging me to complete this thesis.
A word of special mention goes to all teaching and non-teaching staff members, Department of Physics, Periyar University, Salem for their constant encouragement and valuable help.

Last but not least, thanks be to God for my life through all tests in the past five years. You have made my life more bountiful. May your name be exalted, honored, and glorified.
Publications based on the research work

1. A theoretical charge density study on nitrogen-rich 4,4’,5,5´-Tetranitro-2,2´-bi-1H-imidazole (TNBI) energetic molecule.

2. Charge density distribution, Electrostatic properties and the Sensitivity of High energetic 2,4,6-Trinitro-1,3,5-triazine molecule: A theoretical study.

3. Crystal density prediction, charge density distribution and the explosive properties of high energetic 2-Methyl-5-nitroamino-tetrazole molecule: A theoretical study.

4. *Ab initio* crystal structure and understanding the bond strength of high energetic 2,4-Dinitro benzoic acids molecule via Quantum chemical calculations and charge density analysis.

5. Crystal density, charge density distribution, impact sensitivity and explosive properties of high energy nitrogen rich linear N_{10} molecules: A density functional and AIM study

6. Exploring crystal density, charge density and explosives properties of 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105) energetic molecule - A computational study.
7. Ab initio crystal structure and density prediction, charge density and impact sensitivity analysis of high energetic 4-Amino-3,5-dinitro-1H-pyrazole molecule.

P. Srinivasan, S. N. Asthana and Rajesh B. Pawar and P. Kumaradhas,
(Manuscript under preparation)

8. Bond topological, electrostatic and thermo chemical properties of 2,4,6-Trinitro-2,4,6-triazaheptane (ORDX)–A Computational study.

P. Srinivasan, S. N. Asthana and Rajesh B. Pawar and P. Kumaradhas,
(Manuscript under preparation)

Publications related to the research work

1. Bond charge depletion, bond strength and the impact sensitivity of high energetic 1,3,5-Triamino 2,4,6-trinitrobenzene (TATB) molecule: A theoretical charge density analysis.

2. Exploring the bond topological and electrostatic properties of Benzimidazole molecule via Experimental and theoretical charge density study.

3. Effect of gold atom contact in conjugated system of one-dimensional octane dithiolate based molecular wire: A theoretical charge density study.

4. Ab initio crystal structure prediction and the charge density distribution of high energetic Dimethyl nitraminotetrazole: A first step for design of high energy density material.

Thesis work contributed in conferences/seminars/workshop

