INTRODUCTION
Cucurbits constitute one of the most important vegetable source of the world. They are classified under family cucurbitaceae of Angiosperms. Cucurbits occupy a prominent place in the diet of human being and may rank in importance only after cereals, legumes and potato. Some of the members have been used in preparation of indigenous medicine in the country since ancient times. Mostly they are grown as summer and rainy season crop but a few are available during the winter season also. Some varieties are excellent for culinary use during early stage of maturity while the reverse may be true for the other varieties.

Delicious sweets are also made from some cucurbits. Mature fruits of some members of cucurbitaceae are hard shelled and are used for making musical instruments as well as domestic utensils for the people living below poverty line in the villages. Some of the more commonly grown cucurbits are *Trichosanthes dioica, T. anguina, Momordica charantia, M. dioica, Luffa cylindrica, L. acutangula, Lagenaria vulgaris, Cucurbita maxima* and *C. pepo*. In India these species are common vegetable for people living in the villages and cities.

In eastern Uttar Pradesh, cucurbits are mainly grown as summer and rainy season crops but a few are available as winter crop also. In North India
cucurbits are mainly grown along the river beds between the months of October and June.

Commonly grown cucurbits in this area include *Lagenaria siceraria, Cucurbita pepo, Luffa cylindrica, Citrullus lanatus* thambmone, *cucurbita moschata* and *Cucurbita maxima* Linn. In these crops several diseases are caused by different pathogens of which viruses are dominant. Major diseases are caused by Cucumber mosaic virus (CMV) and Squesh mosaic virus (SMV), cucumber green mottle mosaic virus (CGMMV), Water melon mosaic virus (WMMV), Cucumber Necrotic virus (CNV), Muskmelon vein necrosis virus (MMVNV) and many other viruses Damage caused by these viruses are quite apparent and results into heavy economic losses.

The complexity of many virus diseases has led to the development of a large number of approaches for their control, one of which involves the inhibition of pathogenicity of the viruses as it is nonhazardous and ecofrenendly.

The inhibition of infectivity of a virus is defined variously by different workers. Loebenstein (1972 b) defined “inhibition” where virus infection or replication is prevented by a non multiplying substance that does not inactivate the virus *in vitro*. According to Ragetli and Weintraub (1974) a virus inhibitor is an agent which interferes with the pathogenicity of a virus, as by a lack of response in the test plant.

A wide variety of natural and synthetic products are known to inhibit the virus infection on susceptible plants. Apart from chemicals several plant
extracts from higher plants have been found to inhibit infection and multiplication of viruses in different host plants. They not only induce local protection but also systemic protection (Verma and Mukerjee, 1975, 1977, Srivastava et al., 1976, Verma and Awasthi, 1979 and Verma et al., 1979 a,b and c).

Amongst the naturally occurring inhibitors of plant viruses, existence of a number of phenolic compounds has been reported. Phenols are the aromatic compounds containing hydroxyls (OH) group directly attached to the benzene ring. They range in complexity over a wide spectrum from many simple to complex phenols. Besides their occurrence in plants as by products of metabolism, these compounds have got special significance for their use as a tool in chemotherapy. Some of these compounds such as tannic acid, catechal have been reported by different workers for their antiviral properties (Thresh 1956 Cheo and Linder, 1964 woods and Agrios, 1974). A number of phenols also have been reported to cause viruses to loose their characteristic structural and biological properties and to interfere with their establishment and multiplication in the plant. Hampton and Fulton (1961) showed the importance of oxidized phenols in causing loss of infectivity of various viruses in crude extracts.

A number of workers have investigated the natural virus inhibiting substances from the different plant parts of the higher plants but very scanty information is available regarding the virus inhibiting substances form the bark of higher plants (Verma et al., 1970 Singh 1971 Singh and Singh, 1973, 1975
Singh and Gupta, 1970 and Tiwari, 1976). Therefore, considering the importance of cucurbit crops, the present study was undertaken to find out the antiviral substances against the cucumber mosaic virus (CMV) and cucumber green mottle mosaic virus (CGMMV) from the bark of higher plants as these virus diseases are most prevalent among cucurbitaceae crops in eastern Uttar Pradesh.