<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Brief Time-line of Development in the Field of Electrical Insulations</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Different Components of Polymer Nanocomposites (Lau and Piah 2011)</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Change in (a) Interface Volume Content with Nanofiller Content, (b) Arcing Time with Nanofiller Content (Raetzke and Kindersberger 2010)</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Impact of Method of Preparation on Different Dielectric Properties of Epoxy Nanocomposites (Yang et al. 2012)</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Effect of (a) Non-modification of Surface, (b) Surface Modification of Nanofiller on Breakdown Strength of Epoxy Nanocomposites (Katayama et al. 2011)</td>
<td>14</td>
</tr>
<tr>
<td>1.6</td>
<td>Inconsistencies in ‘T<sub>g</sub>’ Values of Epoxy Nanocomposites</td>
<td>15</td>
</tr>
<tr>
<td>1.7</td>
<td>Leakage Current under (a) AC Voltage, (b) Positive DC Voltage, (c) Negative DC Voltage, and (d) Tracking Time of Epoxy Nanocomposites under Different Voltages (Sarathi et al. 2007)</td>
<td>18</td>
</tr>
<tr>
<td>1.8</td>
<td>Role of Self-healing Agent in Crack Embedment (Ghosh 2009)</td>
<td>29</td>
</tr>
<tr>
<td>2.1</td>
<td>Preparation of XLPE/Silica Un-modified Micro and Nanocomposites</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Preparation of XLPE/Silica Surface-modified Nanocomposites</td>
<td>33</td>
</tr>
<tr>
<td>2.3</td>
<td>Process of Surface Modification of MgO Nanoparticles</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>SEM Image of (a) Pure XLPE, (b) XLPE/Silica Micro 30 wt %, (c) XLPE/Silica Un-modified Nano 2 wt %, (d) XLPE/Silica Un-modified Nano 3 wt %</td>
<td>35</td>
</tr>
<tr>
<td>2.5</td>
<td>SEM Image of XLPE/Silica Agglomerated (a) Nano 1 wt %, (b) Nano 2 wt %, (c) Nano 3 wt %, (d) Nano 4 wt %, (e) Nano 5 wt %, (f) Nano 10 wt %</td>
<td>36</td>
</tr>
<tr>
<td>2.6</td>
<td>SEM Image of XLPE-OS-Silica (a) Nano 1 wt %, (b) Nano 2 wt %, (c) Nano 3 wt %, (d) Nano 4 wt %, (e) Nano 5 wt %, (f) Nano 10 wt %</td>
<td>38</td>
</tr>
</tbody>
</table>
3.12 PD Characteristics of Agglomerated and Surface-modified XLPE-OS-
Silica Nano 4 wt % Nanocomposite ... 57
3.13 PD Characteristics of Agglomerated and Surface-modified XLPE-OS-
Silica Nano 5 wt % Nanocomposite ... 58
3.14 PD Characteristics of Agglomerated and Surface-modified XLPE-OS-
Silica Nano 10 wt % Nanocomposite ... 58
3.15 PD Pulses at 15.5 kV inside Pure XLPE 59
3.16 PD Pulses at 15.5 kV inside XLPE/Silica Nanocomposite for Nano 1 wt
% .. 59
3.17 PD Pulses at 15.5 kV inside XLPE/Silica Nanocomposite for Nano 2 wt
% .. 60
3.18 PD Pulses at 15.5 kV inside XLPE/Silica Nanocomposite for Nano 3 wt
% .. 60
3.19 PD Pulses at 15.5 kV inside XLPE/Silica Nanocomposite for Nano 4 wt
% .. 61
3.20 PD Pulses at 15.5 kV inside XLPE/Silica Nanocomposite for Nano 5 wt
% .. 61
3.21 PD Pulses at 15.5 kV inside XLPE/Silica Nanocomposite for Nano 10
wt % .. 62
3.22 DIV and BDV Values of XLPE/Silica Nanocomposites 63
3.23 Chemical Attachment of OS Modified Nanosilica into XLPE Matrix .. 64
3.24 Representation of Polymer Chain Alignment with Un-modified Nanosilica 64
3.25 Representation of Polymer Chain Alignment with OS Surface-modified
Nanosilica ... 65
4.1 Responsible Factors for Electrical Tree Formation in Insulation 66
4.2 Bow-type and Vented-type Electrical Tree Structure 67
4.3 Representation of Growth of Electrical Tree 68
4.4 Experimental Setup for Electrical Treeing Study According to ASTM
D6097-16 Standard .. 69
4.5 Electrical Tree Growth inside Pure XLPE 70
4.6 Electrical Tree Growth inside XLPE/Silica Micro 30 wt % 71
4.7 Electrical Tree Growth inside XLPE/Silica Micro 40 wt % 71
4.8 Electrical Tree Growth inside XLPE/Silica Micro 50 wt % 72
4.9 Electrical Tree Growth inside XLPE/Silica Nano 1 wt % (Un-modified) 72
4.10 Electrical Tree Growth inside XLPE/Silica Nano 2 wt % (Un-modified) 73
4.11 Electrical Tree Growth inside XLPE/Silica Nano 3 wt % (Un-modified) 73
4.12 Electrical Tree Growth inside XLPE/Silica Nano 4 wt % (Un-modified) 74
4.13 Electrical Tree Growth inside XLPE/Silica Nano 5 wt % (Un-modified) 74
4.14 Electrical Tree Growth inside XLPE/Silica Nano 10 wt % (Un-modified) 75
4.15 Electrical Tree Growth inside XLPE/Silica Nano 1 wt % (Surface-modified) 75
4.16 Electrical Tree Growth inside XLPE/Silica Nano 2 wt % (Surface-modified) 76
4.17 Electrical Tree Growth inside XLPE/Silica Nano 3 wt % (Surface-modified) 76
4.18 Electrical Tree Growth inside XLPE/Silica Nano 4 wt % (Surface-modified) 77
4.19 Electrical Tree Growth inside XLPE/Silica Nano 5 wt % (Surface-modified) 77
4.20 Effect of Micro and Nanosilica (Un-modified) on the Electrical Tree Starting Time 79
4.21 Effect of Micro and Nanosilica (Surface-modified) on the Electrical Tree Starting Time 79
4.22 Effect of Micro and Nanosilica (Un-modified) on the Electrical Tree Breakdown Time (Un-modified) 80
4.23 Effect of Micro and Nanosilica (Surface-modified) on the Electrical Tree Breakdown Time 81
4.24 Effect of Addition of Micro and Nanosilica (Un-modified) on the Propagation and Expansion of the Electrical Tree After 1hr 82
4.25 Effect of Addition of Micro and Nanosilica (Surface-modified) on the Propagation and Expansion of the Electrical Tree After 1hr 82
4.26 Proposed Theory of Electrical Tree Propagation inside XLPE Micro and Nanocomposites 83
4.27 SEM Image of Electrical Tree inside XLPE/Silica Un-modified Nano 4 wt % Sample 84
4.28 Hollow Tubular Channel Formation inside XLPE/Silica Un-modified Nano 4 wt % Sample 85
4.29 Breakdown of XLPE/Silica Nano 1 wt % Sample Due to the Electrical Tree ... 85
5.1 Schematic of PEA Measurement System .. 89
5.2 SEM characterization of (a) XLPE-OS-Silica 2 wt %, (b) XLPE- APTES-MgO 3 wt % ... 92
5.3 Space Charge Profile of XLPE-OS-Silica Nanocomposites at 20 kV/mm (Color codes: black line - 0 minute, red line - 10 minute, dashed black line - 30 minute, dashed red line - 60 minute) 93
5.4 Space Charge Profile of XLPE-APTES-MgO Nanocomposites at 20 kV/mm (Color codes: black line - 0 minute, red line - 10 minute, dashed black line - 30 minute, dashed red line - 60 minute) 94
5.5 Average Space Charge Density of XLPE-OS-Silica Nanocomposites during Polarization ... 96
5.6 Average Space Charge Density of XLPE-OS-Silica Nanocomposites during Depolarization ... 96
5.7 Average Space Charge Density of XLPE-APTES-MgO Nanocomposites during Polarization ... 97
5.8 Average Space Charge Density of XLPE-APTES-MgO Nanocomposites during Depolarization ... 97
5.9 Apparent Charge Mobility of XLPE-OS-Silica Nanocomposites 99
5.10 Apparent Charge Mobility of XLPE-APTES-MgO Nanocomposites 99
5.11 Schematic of Three Electrode System for Conduction Current Measurement ... 101
5.12 Polarization-depolarization Current Measurement of XLPE-OS-Silica Nanocomposites ... 102
5.13 Polarization-depolarization Current Measurement of XLPE-APTES-MgO Nanocomposites ... 102
5.14 DC Conductivity of XLPE-OS-Silica Nanocomposites 103
5.15 DC Conductivity of XLPE-APTES-MgO Nanocomposites 104
5.16 UV absorption spectra of XLPE-OS-Silica nano 1 wt % nanocomposite 105
5.17 Band Gap Theory Model for XLPE-OS-Silica Nanocomposites 107
5.18 Band Gap Theory Model for XLPE-APTES-MgO Nanocomposites 108
A.1 Space Charge Profile of Pure XLPE during Depolarization at 20 kV/mm 135
A.2 Space Charge Profile of XLPE-OS-Silica Nano 1 wt% during Depolarization at 20 kV/mm ... 135
A.3 Space Charge Profile of XLPE-OS-Silica Nano 2 wt% during Depolarization at 20 kV/mm ... 136
A.4 Space Charge Profile of XLPE-OS-Silica Nano 3 wt% during Depolarization at 20 kV/mm ... 136
A.5 Space Charge Profile of XLPE-OS-Silica Nano 4 wt% during Depolarization at 20 kV/mm ... 137
A.6 Space Charge Profile of XLPE-OS-Silica Nano 5 wt% during Depolarization at 20 kV/mm ... 137
A.7 Space Charge Profile of XLPE-APTES-MgO Nano 1 wt% during Depolarization at 20 kV/mm ... 138
A.8 Space Charge Profile of XLPE-APTES-MgO Nano 2 wt% during Depolarization at 20 kV/mm ... 138
A.9 Space Charge Profile of XLPE-APTES-MgO Nano 3 wt% during Depolarization at 20 kV/mm ... 139
A.10 Space Charge Profile of XLPE-APTES-MgO Nano 4 wt% during Depolarization at 20 kV/mm ... 139
A.11 Space Charge Profile of XLPE-APTES-MgO Nano 5 wt% during Depolarization at 20 kV/mm ... 140
B.1 Experimental Test Setup for PD Measurement 141
B.2 Sample used for PD experiment (front and back view) 142
B.3 PEA System Used for Space Charge Measurement 142
B.4 Three Electrode System Used for Space Charge Measurement ... 143