References


Asahina H, Kuraoka I, Shirakawa M et al. [1994]. The XPA protein is a zinc metalloprotein with an ability to recognize various kinds of DNA damage. Mutat Res 315, 229-237.

Auerbach AD. [2009]. Fanconianemia and its diagnosis. Mutation Research 668, 4-10.

Bagchi S. [2008]. Breast cancer rises in India. CMAJ 179, 27.

Balaban NQ, Merlin J, Chait R et al. [2004]. Bacterial persistence as a phenotypic switch, Science 305, 1622-1625.


Bindra RS, Gibson SL, Meng A et al. [2005]. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 65, 11597-11604.


Chen J, Silver DP, Walpita D, et al. [1999a]. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell. 2, 317-328.

Chen PL, Chen CF, Chen Y, et al. [1998b]. The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. PNAS 95, 5287-5292.


Chung M, Chang HR, Bland KI et al. [1996]. Younger women with breast carcinoma have a poorer prognosis than older women. Cancer 77, 97-103.


Cunningham JM, Cicek MS, Larson NB et al. [2014]. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status. Sci Rep 4, 4026.


Dutta V, Chopra GS, Sahai K et al. [2008]. Hormone receptors, Her-2 / Neu and chromosomal aberrations in breast cancer. MJAFI 64, 11–15.


Ferrer M, de Winter JP, Mastenbroek DC et al. [2004]. Chemosensitizing tumor cells by targeting the Fanconi anemia pathway with an adenovirus overexpressing dominant-negative FANCA. Cancer Gene Ther. 11, 539-546.


Globocan 2012. globocan.iarc.fr/ globocan.


Ignatov T, Poehlmann A, Ignatov A et al. [2013]. BRCA1 promoter methylation is a marker of better response to anthracycline-based therapy in sporadic TNBC. Breast Cancer Res Treat. 141, 205-212.


Jeffers LJ, Coull BJ, Stack SJ et al. [2008]. Distinct BRCT domains in Mcph1/Brit1 mediate ionizing radiation-induced focus formation and centrosomal localization. Oncogene 27, 139-144.


Khafif A, Schantz SP, Chou TC et al. [1998]. Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells, Carcinogenesis 19, 419–424.


Kidd JM, Cooper GM, Donahue WF et al. [2008]. Mapping and sequencing of structural variation from eight human genomes. Nature 453, 56-64.


Koonin EV, Altschul SF and Bork P. [1996]. BRCA1 protein products ... Functional motifs... Nat Genet. 13, 266-268.

Korabiewska M, Viehowr M, Schlott T et al. [2001]. Relationship between DNA ploidy-related parameters and the deletions in mismatch repair genes MLH1 and MSH2 in lentigo maligna and malignant melanomas. Arch Dermatol Res. 293, 219-225.


Latta EK, Tjan S, Parkes RK et al. [2002]. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Modern Pathology 15, 1318e1325.


Lee WY, Jin YT, Chang TW et al. [1999]. Immunolocalization of BRCA1 protein in normal breast tissue and sporadic invasive ductal carcinomas: a correlation with other biological parameters. Histopathology 34, 106-112.


Mazumder Indra D, Mitra S, Roy A et al. [2011a]. Alterations of ATM and CADM1 in chromosomal 11q22.323.2 region are associated with the development of invasive cervical carcinoma. Hum Genet. 130, 735-748.


Mukherjee N, Islam MS, Roychowdhury A et al. [2016]. The stem cell renewal and DNA damage response pathways are frequently altered in fibroepithelial tumors of breast in Indian patients. Pathol Res Pract. 212, 196-203.


Murata H, Khattar NH, Kang Y et al. [2002]. Genetic and epigenetic modification of mismatch repair genes hMSH2 and hMLH1 in sporadic breast cancer with microsatellite instability. Oncogene 21, 5696-5703.


Naqvi RA, Hussain A, Deo SS et al. [2008]. Hypermethylation analysis of mismatch repair genes (hmlh1 and hmsh2) in locally advanced breast cancers in Indian women. Hum Pathol 39, 672-680.


Parise CA, Caggiano V. [2014]. Breast Cancer Survival Defined by the ER/PR/HER2 Subtypes and a Surrogate Classification according to Tumor Grade and Immunohistochemical Biomarkers. J Cancer Epidemiol 2014, 469251.


Phelan CM, Borg A, Cuny M et al. [1998]. Consortium study on 1280 breast carcinomas: allelic loss on chromosome 17 targets subregions associated with family history and clinical parameters. Cancer Res. 58, 1004-1012.


Polo SE and Almouzni G. [2015]. Chromatin dynamics after DNA damage: The legacy of the access-repair-restore model. DNA Repair 36, 114–121.


Ray R, Chakraborty BK, Ray K et al. [1996]. Effect of anthracycline antitumor antibiotics (adriamycin and nogalamycin) and cycloheximide on the biosynthesis and processing of major UsnRNAs. Mol Cell Biochem. 162, 75-82.


Semenza GL. [2012]. Hypoxia-inducible factors in physiology and medicine. Cell. 148, 399-408.


Sinha S, Singh RK, Alam N et al. [2008a]. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer 7, 84.


Spanheimer PM, Askeland RW, Kulak MV et al. [2013]. High TFAP2C/low CD44 expression is associated with an increased rate of pathologic complete response following neoadjuvant chemotherapy in breast cancer. J Surg Res 184, 519-525.


Staaf J, Torngren T, Rambech E, et al. [2008]. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH). Hum Mutat. 29, 555-564.


Sur S, Pal D, Banerjee K et al. [2016]. Amarogentin regulates self renewal pathways to restrict liver carcinogenesis in experimental mouse model. Mol Carcinog. 55, 1138-1149.


Sy SM, Huen MS and Chen J. [2009]. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. PNAS 106, 7155-7160.


Takahatake M, Blyth BJ, Daino K et al. [2016]. DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation. PLoS ONE 11, e0164194.


Tong D, Kucera E, Schuster E, et al. [2000]. Loss of heterozygosity (LOH) at p53 is correlated with LOH at BRCA1 and BRCA2 in various human malignant tumors. Int J Cancer 88, 319-322.

Treilleux I, Chapot S, Goddard et al. [2007]. The molecular causes of low ATM protein expression in breast carcinoma; promoter methylation and levels of the catalytic subunit of DNA-dependent protein kinase. Histopathology. 51, 63-69.


Wang GL, Jiang BH, Rue EA et al. [1995]. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92, 5510–5514.


Welch PL and King MC. [2001]. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet. 10, 705-713.


