LIST OF SCHEMES & FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Captions</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig.1.1:</td>
<td>Factors which affect the cost of corrosion.</td>
<td>2</td>
</tr>
<tr>
<td>Fig.1.2:</td>
<td>Different forms of corrosion.</td>
<td>3</td>
</tr>
<tr>
<td>Fig.1.3:</td>
<td>Corrosion control Methods.</td>
<td>7</td>
</tr>
<tr>
<td>Fig.1.4:</td>
<td>Schematic representation of a surfactant monomer.</td>
<td>13</td>
</tr>
<tr>
<td>Fig.1.5:</td>
<td>General classification of surfactants.</td>
<td>14</td>
</tr>
<tr>
<td>Fig.1.6:</td>
<td>Schematic representation of a gemini surfactant.</td>
<td>16</td>
</tr>
<tr>
<td>Fig.1.7:</td>
<td>Schematic representation of adsorption of gemini surfactant on steel surface.</td>
<td>18</td>
</tr>
<tr>
<td>Fig.1.8:</td>
<td>Adsorption model of gemini surfactants onto steel surface in acidic medium at various concentration.</td>
<td>19</td>
</tr>
<tr>
<td>Chapter II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheme 2.1:</td>
<td>Pathway for the synthesis of cationic gemini surfactants ethane-1,2-diyl bis(N,N-dimethyl-N-alkylammoniumacetoxy)dichloride (m = 12, 14, 16).</td>
<td>49</td>
</tr>
<tr>
<td>Scheme 2.2:</td>
<td>Pathway for the synthesis of amino acid based nonionic (i) monomeric (C_{12}Cys) and (ii) gemini 2(C_{12}Cys) surfactants.</td>
<td>51</td>
</tr>
<tr>
<td>Scheme 2.3:</td>
<td>Pathway for the synthesis of sugar based nonionic Glu(12)-2-Glu(12) gemini surfactant.</td>
<td>53</td>
</tr>
<tr>
<td>Scheme 2.4:</td>
<td>Pathway for the synthesis of ester based pyridinium cationic gemini surfactants.</td>
<td>54</td>
</tr>
<tr>
<td>Scheme 2.5:</td>
<td>Pathway for the synthesis of sugar based nonionic Glu (n) surfactants.</td>
<td>55</td>
</tr>
<tr>
<td>Fig.2.1:</td>
<td>Potentiostat/galvanostat used to carry out electrochemical measurements.</td>
<td>60</td>
</tr>
<tr>
<td>Fig.2.2:</td>
<td>1 L electrochemical cell supplied by Autolab used to carry out electrochemical measurements.</td>
<td>61</td>
</tr>
</tbody>
</table>
Chapter III

Fig. 3.1: Variation in the surface tension as a function of concentration for m-E2-m and m-E2-m+NaSal in 1M HCl solution.

Fig. 3.2: (a) Structure of NaSal, (b) m-E2-m, and (c) various interactions existing between m-E2-m and NaSal.

Fig. 3.3: Variation of inhibition efficiency (η_w) with immersion time (t) in the presence of optimum concentration (1×10^{-2} mM) of m-E2-m at 30°C.

Fig. 3.4: E_{ocp}-time curves for MS in 1M HCl solution without and with optimum concentration of m-E2-m at 30°C.

Fig. 3.5: PDP curves for MS in 1M HCl solution in the absence and presence of (A) different concentrations of m-E2-m: (a) 12-E2-12, (b) 14-E2-12, and (c) 16-E2-16; (B) different concentrations m-E2-m+10 mM NaSal at 30°C: (a) 12-E2-12, (b) 14-E2-12, and (c) 16-E2-16 at 30°C.

Fig. 3.6: Nyquist curves for MS in 1M HCl in the absence and presence of (A) different concentrations of m-E2-m: (a) 12-E2-12, (b) 14-E2-12, and (c) 16-E2-16; (B) different concentrations m-E2-m+10 mM NaSal: (a) 12-E2-12, (b) 14-E2-12, and (c) 16-E2-16 at 30°C. (line and symbol shows fitted and experimental data, respectively).

Fig. 3.7: Bode curves for MS in 1M HCl in the absence and presence of (A) different concentrations of m-E2-m: (a) 12-E2-12, (b) 14-E2-12, and (c) 16-E2-16; (B) different concentrations m-E2-m+10 mM NaSal: (a) 12-E2-12, (b) 14-E2-12, and (c) 16-E2-16 at 30°C.

Fig. 3.8: Equivalent circuit model used to fit the impedance measurement data for MS in 1M HCl ($R_s =$ solution resistance, $R_{ct} =$ charge-transfer resistance, and $CPE =$ constant phase element).
Fig. 3.9: Langmuir adsorption isotherm for (a) 12-E2-12, (b) 14-E2-14, and (c) 16-E2-16 adsorbed on the MS surface in 1M HCl solution at different temperatures.

Fig. 3.10: Plot of log K_{ads} vs. $1/T$ of m-E2-m.

Fig. 3.11: Arrhenius plots for MS in 1M HCl in the absence and presence of different concentrations of (a) 12-E2-12, (b) 14-E2-14, and (c) 16-E2-16.

Fig. 3.12: Alternative Arrhenius plots for MS in 1M HCl in the absence and presence of different concentrations of (a) 12-E2-12, (b) 14-E2-14, and (c) 16-E2-16.

Fig. 3.13: UV-visible spectra for m-E2-m before and after MS immersion.

Fig. 3.14: FT-IR adsorption spectrum for free m-E2-m and adsorbed film (Fe-m-E2-m) on the MS surface.

Fig. 3.15: TGA curve for free m-E2-m and scrapped sample (Fe-m-E2-m) and adsorbed film (Fe-m-E2-m) on the MS surface.

Fig. 3.16: SEM photomicrographs: (a) polished surface, (b) uninhibited acid, (c) 12-E2-12, (d) 14-E2-14, and (e) 16-E2-16 inhibited acid.

Fig. 3.17: EDX profile: (a) polished surface, (b) uninhibited acid, (c) 12-E2-12, (d) 14-E2-14, and (e) 16-E2-16 inhibited acid.

Fig. 3.18: (a) Optimized geometry of studied m-E2-m with, (b) HOMO and, (c) LUMO orbital occupation.

Chapter IV

Fig.4.1: Variation in the surface tension as a function of concentration for (C_{12}Cys) and 2(C_{12}Cys).

Fig.4.2: Variation of inhibition efficiency (η_w) with immersion time (t) in the presence of optimum concentration of (a) (C_{12}Cys) and (b) 2(C_{12}Cys) inhibitors at 30°C.

Fig.4.3: E_{OCP} vs. time curves for MS in 1M HCl without and with optimum concentration of (C_{12}Cys) and 2(C_{12}Cys) at 30°C.

Fig.4.4: PDP curves for MS in 1M HCl solution without and with different concentrations of (a) (C_{12}Cys) (b) 2(C_{12}Cys) at 30°C.
Fig. 4.5: Nyquist plots for MS in 1M HCl solution without and with different concentrations of (a) (C₁₂Cys) (b) 2(C₁₂Cys) at 30°C.

Fig. 4.6: Bode plots for MS in 1M HCl solution without and with different concentrations of (a) (C₁₂Cys) (b) 2(C₁₂Cys) at 30°C.

Fig. 4.7: Equivalent circuit model used to fit the impedance measurement data for MS in 1M HCl (R_s = solution resistance, R_{ct} = charge-transfer resistance, and CPE = constant phase element).

Fig. 4.8: Langmuir adsorption isotherm plots for (a) (C₁₂Cys) (b) 2(C₁₂Cys) at 30-60°C.

Fig. 4.9: Linear regression between log K_{ads} and $1/T$ (a) (C₁₂Cys) and (b) 2(C₁₂Cys).

Fig. 4.10: Arrhenius plots for MS in 1M HCl in the absence and presence of different concentrations of (a) (C₁₂Cys) and (b) 2(C₁₂Cys).

Fig. 4.11: Alternative Arrhenius plots for MS in 1M HCl in the absence and presence of different concentrations of (a) (C₁₂Cys) and (b) 2(C₁₂Cys).

Fig. 4.12: AFM images for MS after 6 h immersion in 1M HCl solution: (a) polished MS prior to immersion, (b) uninhibited solution (c) acid solution with 0.2 mM (C₁₂Cys) and (d) acid solution with 0.002 mM 2(C₁₂Cys).

Fig. 4.13: SEM images for MS after 6 h immersion in 1M HCl solution (a) polished MS prior to immersion, (b) uninhibited solution, (c) acid solution with 0.2 mM (C₁₂Cys), and (d) acid solution with 0.002 mM 2(C₁₂Cys).

Fig. 4.14: EDX images for MS after 6 h immersion in 1M HCl solution (a) polished MS prior to immersion, (b) uninhibited solution, (c) acid solution with 0.2 mM (C₁₂Cys), and (d) acid solution with 0.002 mM 2(C₁₂Cys).

Fig. 4.15: Protonation process of (C₁₂Cys) and 2(C₁₂Cys) in acidic medium.

Fig. 4.16: Optimized structures, HOMO and LUMO energies of (C₁₂Cys) and 2(C₁₂Cys).
Fig. 4.17: (a) Model Structures simulating the adsorption of (C\textsubscript{12}Cys) and 2(C\textsubscript{12}Cys) on Fe surface (b) Probability distribution curves in adsorption energy function for (C\textsubscript{12}Cys) and 2(C\textsubscript{12}Cys) on Fe surface.

Chapter-V

Fig. 5.1: Variation in the surface tension as a function of concentration for Glu(12)-2-Glu(12) and Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.2: \(E_{\text{OCP}} \) vs. time curves for MS in 3.5% NaCl without and with optimum concentration of Glu(12)-2-Glu(12) and Glu(12)-2-Glu(12)+10 mM KI at 30°C.

Fig. 5.3: PDP curves for MS in 3.5% NaCl solution without and with different concentrations of (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.4: Nyquist plots for MS in 3.5% NaCl solution without and with different concentrations of (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.5: Bode plots for MS in 3.5% NaCl solution without and with different concentrations of (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.6: Equivalent circuit model used to fit the impedance measurement data for MS in 3.5% NaCl solution (\(R_s \) = solution resistance, \(R_{ct} \) = charge-transfer resistance, and \(CPE \) = constant phase element).

Fig. 5.7: Langmuir adsorption isotherm plots for MS in 3.5% NaCl solution containing various concentrations of (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI at 30-60°C.

Fig. 5.8: Linear regression between log \(K_{\text{ads}} \) and \(1/T \) (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.9: Arrhenius plots for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI.
Fig. 5.10: Alternative Arrhenius plots for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu(12)-2-Glu(12) and (b) Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.11: AFM images for MS: (a) polished MS, (b) in 3.5% NaCl solution, (c) in 3.5% NaCl solution with 2.5×10^{-3} mM Glu(12)-2-Glu(12), and (d) in 3.5% NaCl solution with 2.5×10^{-3} mM Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.12: SEM images for MS: (a) polished MS, (b) in 3.5% NaCl solution, (c) in 3.5% NaCl solution with 2.5×10^{-3} mM Glu(12)-2-Glu(12), and (d) in 3.5% NaCl solution with 2.5×10^{-3} mM Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.13: EDX images for MS: (a) polished MS, (b) in 3.5% NaCl solution, (c) in 3.5% NaCl solution with 2.5×10^{-3} mM Glu(12)-2-Glu(12), and (d) in 3.5% NaCl solution with 2.5×10^{-3} mM Glu(12)-2-Glu(12)+10 mM KI.

Fig. 5.14: Quantum chemical results of Glu(12)-2-Glu(12) molecule obtained by DFT method at B3LYP/6-31G (d,p) basis set: (a) optimized molecular structure, (b) HOMO; (c) LUMO.

Fig. 5.15: Equilibrium adsorption configurations of Glu(12)-2-Glu(12) on the Fe (110) surface at 30 and 60°C obtained by MD simulation.

Chapter VI

Fig.6.1: Variation in the surface tension (γ) as a function of concentration for 14-Py and 16-Py gemini surfactants in 1M HCl solution.

Fig.6.2: Variation of inhibition efficiency (η_w) with immersion time (t) in the absence and presence of optimum concentration of 14-Py and 16-Py inhibitors at 30°C.

Fig.6.3: E_{ocp}-time curves for MS in 1M HCl solution without and with 1×10^{-1} mM of 14-Py and 16-Py inhibitors at 30°C.

Fig.6.4: Tafel polarization curves for MS obtained in 1M HCl solution containing different concentrations of 14-Py and 16-Py at 30°C.
Fig. 6.5: Nyquist plots for MS obtained in 1M HCl solution containing different concentrations of 14-Py and 16-Py at 30°C.

Fig. 6.6: Bode and phase angle plots for MS in 1M HCl solution in the absence and presence of different concentrations of 14-Py and 16-Py at 30°C.

Fig. 6.7: Equivalent circuit model used to fit the impedance measurement data for MS in 1M HCl solution ($R_s =$ solution resistance, $R_{ct} =$ charge-transfer resistance, and $CPE =$ constant phase element).

Fig. 6.8: Langmuir isotherm plots for MS in 1M HCl solution containing various concentrations of 14-Py and 16-Py at different temperatures.

Fig. 6.9: Plots of log K_{ads} vs. $1/T$ of 14-Py and 16-Py.

Fig. 6.10: Arrhenius plots for MS in 1M HCl in the absence and presence of different concentrations of (a) 14-Py and (b) 16-Py.

Fig. 6.11: Alternative Arrhenius plots for MS in 1M HCl in the absence and presence of different concentrations of (a) 14-Py and (b) 16-Py.

Fig. 6.12: FT-IR spectra of free inhibitors (14-Py and 16-Py) and film formed on the MS surface (14-Py+Fe and 16-Py+Fe).

Fig. 6.12: 3D AFM images for MS (a) polished surface, (b) in free acid in the absence of inhibitor and in the presence of optimum concentration of, (c) 14-Py, and (d) 16-Py.

Fig. 6.12: SEM images for MS (a) polished surface, (b) in free acid in the absence of inhibitor, and in the presence of optimum concentration of (c) 14-Py, and (d) 16-Py.

Fig. 6.12: EDX spectra for MS (a) polished surface, (b) in the absence of inhibitor, and in the presence of optimum concentration of (c) 14-Py, and (d) 16-Py.

Chapter VII

Fig. 7.1: Variation in the surface tension as a function of concentration for Glu (n).
Fig. 7.2: \(E_{OCP} \) vs. time curves for MS in 3.5% NaCl solution in the absence and presence of optimum concentration of Glu (n) inhibitors.

Fig. 7.3: PDP curves for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu (10) and (b) Glu (12) at 30°C.

Fig. 7.4: Nyquist plots for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu (10) and (b) Glu (12) at 30°C.

Fig. 7.5: Bode plots for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu (10) and (b) Glu (12) at 30°C.

Fig. 7.6: Equivalent circuit model used to fit the impedance measurement data for MS in 3.5% NaCl solution (\(R_s = \) solution resistance, \(R_{ct} = \) charge-transfer resistance, and \(CPE = \) constant phase element).

Fig. 7.7: Langmuir isotherm plots for (a) Glu (10) and (b) Glu (12) at 30-60°C.

Fig. 7.8: Linear regression between log \(K_{ads} \) and 1/\(T \).

Fig. 7.9: Arrhenius plots for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu (10) and (b) Glu (12).

Fig. 7.10: Alternative Arrhenius plots for MS in 3.5% NaCl solution in the absence and presence of different concentrations of (a) Glu (10) and (b) Glu (12).

Fig. 7.11: FT-IR spectra of free Glu (n) and Glu (n) adsorbed on MS surface.

Fig. 7.12: AFM micrographs of MS surface (a) polished surface, (b) in 3.5% NaCl solution, (c) in 3.5% NaCl solution with 1.25×10^{-2} mM Glu (10), and (d) in 3.5% NaCl solution with 1.25×10^{-2} mM Glu (12).
Fig. 7.13: SEM images of MS in 3.5% NaCl solution (a) polished surface, (b) in 3.5% NaCl, (c) in 3.5% NaCl with 1.25×10^{-2} mM Glu (10), and (d) in 3.5% NaCl with 1.25×10^{-2} mM Glu (12).

Fig. 7.14: EDX images of MS in 3.5% NaCl solution (a) polished surface, (b) in 3.5% NaCl solution, (c) in 3.5% NaCl solution with 1.25×10^{-2} mM Glu (10), and (d) in 3.5% NaCl solution with 1.25×10^{-2} mM Glu (12).

Fig. 7.15: Optimized geometry, HOMO and LUMO of Glu (10) and Glu (12).