List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.</td>
<td>Various factors of manufactured nanoparticles responsible for dissolution of NPs.</td>
<td>18</td>
</tr>
<tr>
<td>4.1.</td>
<td>Graphic view of percentage of mortality in E. foetida exposed with different size of ZnO NPs (100 nm, 50 nm and 10 nm) after 28 days.</td>
<td>44</td>
</tr>
<tr>
<td>4.2.</td>
<td>Graphic view of percentage of mortality of C. elegans exposed with different size of ZnO NPs at 24 hrs of treatment.</td>
<td>45</td>
</tr>
<tr>
<td>4.3.</td>
<td>Percentage of mortality in C. elegans exposed with different size of ZnO NPs at 48 hrs of treatment.</td>
<td>46</td>
</tr>
<tr>
<td>4.4.</td>
<td>Layout of internalization process of ZnO NPs and proposed mechanism of action.</td>
<td>50</td>
</tr>
<tr>
<td>4.5.</td>
<td>Microphotograph of ZnO NPs exposed C. elegans (a) control; (b-d) treated C. elegans (5 mg/L, 7 mg/L and 10 mg/L).</td>
<td>50</td>
</tr>
<tr>
<td>4.6.</td>
<td>Graphic view of cellulolytic activity (µg/g/hr) in gut of E. foetida after exposure of ZnO NPs.</td>
<td>51</td>
</tr>
<tr>
<td>4.7.</td>
<td>Percentage of avoidance in E. foetida at 1st day of exposure of ZnO NPs.</td>
<td>54</td>
</tr>
<tr>
<td>4.8.</td>
<td>Percentage of avoidance in E. foetida at 28 days of exposure of ZnO NPs.</td>
<td>54</td>
</tr>
<tr>
<td>4.9.</td>
<td>Percentage of mobility in E. foetida at first day of exposure of ZnO NPs.</td>
<td>56</td>
</tr>
<tr>
<td>4.10.</td>
<td>Percentage of mobility in E. foetida at 28 days of exposure of ZnO NPs.</td>
<td>56</td>
</tr>
<tr>
<td>4.11.</td>
<td>Cocoon production in E. foetida on 28 days of exposure of various sized ZnO NPs.</td>
<td>57</td>
</tr>
<tr>
<td>4.12.</td>
<td>Graphic view of number of Juvenile/worm in E. foetida at</td>
<td></td>
</tr>
</tbody>
</table>
exposure of various sizes of ZnO NPs.

4.13. Percentage of internalized NPs in coelomocytes of *E. foetida* at 24 and 48 hrs of exposure.

4.14. Confocal microphotograph of coelomocytes exposed with labelled ZnO NPs at 24 hrs of exposure.

4.15. Transverse section of *E. foetida* exposed with labelled ZnO NPs under fluorescence microscope.

4.16. Fluorescence microphotograph of coelomocytes on exposure of labelled ZnO NPs, (a) control (20X); (b) exposed eleocytes (40X); (c) eleocytes and amoebocytes (20X).

4.17. Intercellular localization of ZnO NPs in *E. foetida* gut after exposure.

4.18. Electron microphotograph of gut tissue of *E. foetida* on exposure of ZnO NPs.

4.19. Proposed mechanism of internalization of ZnO NPs in coelomic cells of earthworm.

4.20. Viability of coelomocytes after exposure of 100 and 50 nm at different intervals of exposure.

4.21. Total viability of coelomocytes after exposure; 100 nm (a) 50 nm (b) of ZnO NPs.

4.22. Comet assay microphotograph of coelomocytes after exposure to 50 nm ZnO NPs (3 mg/L) at different interval.

4.23. Comet assay microphotograph of coelomocytes after exposure to 50 nm ZnO NPs (5 mg/L) at different intervals.

4.24. Comet assay microphotograph of coelomocytes after exposure to 100 nm ZnO NPs (5 mg/L) at different intervals.

4.25. Comet assay microphotograph of coelomocytes after exposure to 100 nm ZnO NPs (3 mg/L) at different intervals

4.26. Releases of Zn metal content in *E. foetida* on exposure of various sizes of NPs.

4.27. Transmission electron microphotograph (a) ZnO NPs
extracted from exposed coelomic fluid of earthworm *E. foetida* and (b) agglomeration of nanoparticles.

4.28. Transmission electron microphotograph of *E. foetida* (a) showing the cellular uptake of ZnO NPs in tissue of gut; (b) inter & intracellular structure and accumulation of ZnO NPs; (c to e) coelomic cells are showing internalization of ZnO NPs at 8 mg/L and 10 mg/L of concentration; (f) control.

4.29. Densitometric profiling of *mtl-1* gene in *E. foetida* tissue exposed with ZnO NPs {(a) 100 nm (b) 50 nm (c) 10 nm} in size-dependent manner normalized with β-actin gene after 28 days.

4.30. Densitometric profiling of *mtl-1* gene in *C. elegans* exposed with ZnO NPs {(a) 100 nm (b) 50 nm (c) 10 nm} in size-dependent manner normalized with β-actin gene at 24 hrs.

4.31. Diagrammatic sketch of probable uptake of ZnO NPs and expression of metallothionein gene in earthworm model.

4.32. Microphotograph (40X) of coelomic cells in *E. foetida*.

4.33. Microphotograph (40X) of coelomic cells in *E. eugeniae*.

4.34. Microphotograph (40X) of coelomic cells in *P. sansibaricus*.

4.35. Histogram of coelomocytes population in different sps. of earthworms.

4.36. Fluorescence microphotograph (40X) of coelomic cells of earthworms showing autofluorescence generated by stored fluorochrome.

4.37. FACS analysis (density plot) of coelomic cells of *E. foetida*.

4.38. FACS analysis (density plot) of coelomic cells of *P. sansibaricus*.

4.39. FACS analysis (density plot) of coelomic cells of *E. eugeniae*.

4.40. TEM microphotograph of coelomocytes of *E. foetida* showing the internalization of ZnO NPs in chloragocytes and
amoebocytes via different modes of uptake.

5.1.1. Colonies of bacterial isolates of ZnO NPs exposed earthworm’s gut.

5.1.2. Screening of bacterial colonies after exposure of ZnO NPs.

5.1.3. View of pure culture of bacterial isolates obtained from ZnO NPs exposed earthworm’s gut.

5.2. Microphotograph of gram stained bacterial isolates.

5.3.1. Scanning electron microphotograph of gut bacterium *Staphylococcus hominis*.

5.3.2. Scanning electron microphotograph of gut bacterium *Bacillus megaterium*.

5.3.3. Scanning electron microphotograph of gut bacterium *Pseudomonas aeruginosa*.

5.3.4. Scanning electron microphotograph of gut bacterium *Paenibacillus sp*.

5.4.1. View of prominent zone of amylase activity of bacterial isolates.

5.4.2. View of low zone of amylase activity of bacterial isolates.

5.4.3. View of amylase activity of various earthworm’s gut isolates to utilize the starch.

5.5.1. View of citrate positive test of bacterial isolates.

5.5.2. View of citrate negative test of bacterial isolates.

5.6. View of carbohydrate fermentation test during the identification of isolates.

5.7. Gel documentation (Bio-Rad XR) images obtained on agarose gel electrophoresis of extracted DNA and amplified 16S rRNA gene fragments of bacterial isolates.

5.8. Bacterial diversity in earthworms gut exposed with ZnO NPs

5.9. Distribution Pattern of bacterial isolates in (a) *E. foetida* (b) *P. sansibaricus* and (c) *E. eugeniae*.

5.10.1. Phylogenetic tree in circular comparison of 16S rRNA gene
sequences of earthworm’s gut isolates obtained by using neighbor joining (NJ) on MEGA 6.

5.10.2. Phylogenetic tree in circular comparison of 16S rRNA gene sequences of earthworm’s gut isolates obtained by using maximum likelihood (ML) on MEGA 6.

5.11. Phylogenetic tree showing comparison of aligned forty-eight 16S rRNA sequences of gut isolates obtained by using neighbor-joining (NJ) method on MEGA 6 Software.

5.12.1. Phylogenetic diversity based on comparison of 16S rRNA gene sequences of bacterial isolates of *E. eugeniae*.

5.12.2. Phylogenetic diversity based on comparison of 16S rRNA gene sequences of bacterial isolates of *P. sansibaricus*.

5.13. Phylogenetic tree of bacterial diversity based on comparison of 16S rRNA gene sequences of 34 potential isolates of *E. foetida*.

6.1.1. *In-vivo* distribution of ZnO NPs (100 nm) in *C. elegans* at 24 hrs.

6.1.2. *In-vivo* distribution of ZnO NPs (100 nm) in *C. elegans* at 48 hrs.

6.1.3. *In-vivo* distribution of ZnO NPs (100 nm) in *C. elegans* at 72 hrs.

6.2. Biodistribution (%) of ZnO NPs (100 nm) at different time interval in *C. elegans*.

6.3. Biodistribution of ZnO NPs (50 nm) at different time interval in *C. elegans*.

6.4.1. *In-vivo* distribution of ZnO NPs (50 nm) in *C. elegans* at 24 hrs.

6.4.2. *In-vivo* distribution of ZnO NPs (50 nm) in *C. elegans* at 48 hrs.

6.4.3. *In-vivo* distribution of ZnO NPs (50 nm) in *C. elegans* at 72 hrs.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5.1.</td>
<td>In-vivo distribution of ZnO NPs (10 nm) in C. elegans at 24 hrs.</td>
<td>124</td>
</tr>
<tr>
<td>6.5.2.</td>
<td>In-vivo distribution of ZnO NPs (10 nm) in C. elegans at 48 hrs.</td>
<td>124</td>
</tr>
<tr>
<td>6.5.3.</td>
<td>In-vivo distribution of ZnO NPs (10 nm) in C. elegans at 72 hrs.</td>
<td>124</td>
</tr>
<tr>
<td>6.6.</td>
<td>Biodistribution of ZnO NPs (10 nm) at different time interval in C. elegans.</td>
<td>125</td>
</tr>
<tr>
<td>6.7.</td>
<td>In-vivo size dependent translocation and biodistribution of ZnO NPs in C. elegans.</td>
<td>125</td>
</tr>
</tbody>
</table>