TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>WHAT IS DATA COMPRESSION?</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>LOSSY AND LOSSLESS COMPRESSION</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>MOTIVATIONS</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>TERMINOLOGIES ASSOCIATED WITH DATA COMPRESSION</td>
<td>7</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Frequency</td>
<td>7</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Probability</td>
<td>7</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Probability Distribution</td>
<td>7</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Sample space</td>
<td>7</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Entropy</td>
<td>8</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Prefix Coding</td>
<td>8</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Variable length Coding</td>
<td>8</td>
</tr>
<tr>
<td>1.4.8</td>
<td>Fixed length Coding</td>
<td>8</td>
</tr>
<tr>
<td>1.4.9</td>
<td>Compressor or Encoder</td>
<td>9</td>
</tr>
<tr>
<td>1.4.10</td>
<td>Decompressor or Decoder</td>
<td>9</td>
</tr>
<tr>
<td>1.4.11</td>
<td>Compression Ratio</td>
<td>9</td>
</tr>
<tr>
<td>1.4.12</td>
<td>Saving Percentage</td>
<td>9</td>
</tr>
<tr>
<td>1.4.13</td>
<td>Compression Time</td>
<td>10</td>
</tr>
<tr>
<td>1.4.14</td>
<td>Decompression Time</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>BASIC DATA COMPRESSION MODEL</td>
<td>10</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Types of redundancies</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>LINEARIZATION</td>
<td>17</td>
</tr>
</tbody>
</table>
1.7 RUN LENGTH CODING 18
1.8 DICTIONARY CODING 19
1.9 STATIC CODING 21
1.10 TRANSFORM CODING 22
1.11 SECURE DATA TRANSMISSION 24
 1.11.1 Importance of encryption 27
 1.11.2 Compression before Encryption 28
1.12 ORGANIZATION OF THE THESIS 30

2 REVIEW OF LITERATURE 32
2.1 SCANNING PATTERNS 32
2.2 SEGMENTATION 37
2.3 MATHEMATICAL TRANSFORMS IN DATA COMPRESSION 38
2.4 COMPRESSION METHODS 42
2.5 DATA SECURITY 50
2.6 RESEARCH GAP 60

3 OBJECTIVE 61
3.1 LIST OF OBJECTIVES 61
3.2 SCOPE OF STUDY 61

4 MATERIALS AND METHODS 63
4.1 HYBRID DATA COMPRESSION MODEL 63
4.2 CHANNEL BASED SEGMENTATION 65
 4.2.1 Representing 2D image pixels 66
4.3 DISCRETE COSINE TRANSFORMS 70
4.4 QUANTIZATION 72
4.5 METHODS FOR SCANNING DCT MATRIX 74
 4.5.1 ZigZagRasterDiagonal Algorithm 74
 4.5.2 ZigZag Sawtooth Wave Algorithm 76
4.5.3 Zigzag scan 79
4.5.4 Raster Scan 80
4.5.5 Snake Horizontal 81
4.5.6 Snake Vertical 82
4.5.7 Diagonal Scan 83
4.5.8 Peano-Hilbert scan 84
4.5.9 Z - Horizontal scan 84
4.5.10 Z - Vertical scan 85
4.5.11 Spiral scan 86

4.6 MODEL TO TEST ASYMPTOTIC BEHAVIOR OF ALGORITHMS 87

4.7 MODEL TO TEST EMPIRICAL PERFORMANCE OF ALGORITHMS 87

4.8 DIFFERENTIAL PULSE CODE MODULATION 88

4.9 ZERO RUN LENGTH ENCODE 88

4.10 HUFFMAN ENCODING ALGORITHM 89
4.10.1 Huffman Table 94

4.11 IMAGE PEELING 97
4.11.1 Image Histograms 98
4.11.2 Color quantization 100
4.11.3 Algorithms for Image peeling 101

4.12 CHOOSING THE TEST DATA 104
4.12.1 Standard text sets 104
4.12.2 Image data sets and Test matrices 105

4.13 PARAMETERS CONSIDERED FOR PERFORMANCE MEASURE 106
4.13.1 Peak Signal Noise Ratio 106
4.13.2 Mean Square Error 106
4.13.3 Compression Ratio 107
4.13.4 BPP 107
4.13.5 Bit Reduction rate 107

4.14 NON LINEAR CHAOTIC MAP FOR SECURE DATA TRANSMISSION 108

5 RESULT 113
5.1 OUTPUT OF IMAGE PEELING 113
5.2 PERFORMANCE OF SCANNING METHODS 114
 5.2.1 Result of asymptotic behavior of algorithms 114
 5.2.2 Result of empirical performance of algorithms 118
5.3 RESULT OF MULTI DEPTH IMAGE COMPRESSION SCHEME 122
5.4 BIT REDUCTION PERFORMANCE MEASURE 124
5.5 IMAGE ENCRYPTION USING NCM 127

6 DISCUSSION 131

7 SUMMARY 138

8 FUTURE DIRECTION 140

9 BIBLIOGRAPHY 141

ANNEXURE I
(A). LIST OF TABLES
(B). LIST OF FIGURES
(C). LIST OF SYMBOLS
(D). ABBREVIATIONS

ANNEXURE II
(A). LIST OF PUBLICATIONS
(B). REPRINTS OF PUBLICATIONS