<table>
<thead>
<tr>
<th>S. No</th>
<th>Contents</th>
<th>Page. No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 1</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>First Generation Biofuel</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1</td>
<td>Problems associated with food crop based biofuel</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Second Generation Biofuel</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Advantages of non-food crop based biofuel</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Problems associated with non-food crop based biofuel</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Third Generation Biofuel</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Advantages of microalgae over plant crops</td>
<td>3</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Problems associated with microalgae biofuel production</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Chapter 2</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Aim</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Objectives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Chapter 3</td>
<td>6</td>
</tr>
<tr>
<td>3.0</td>
<td>Review of literature</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Nitrogen source</td>
<td>6</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Inorganic nitrogen concentration effect on biomass and lipid production</td>
<td>9</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Inorganic nitrogen concentration effect on carbohydrate production</td>
<td>9</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Organic nitrogen concentration effect on biomass and lipid production</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Carbon source</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Inorganic carbon source</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Organic carbon source</td>
<td>14</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Mixotrophic cultivation mode</td>
<td>14</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Heterotrophic cultivation mode</td>
<td>15</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Comparison between heterotrophic and mixotrophic cultivation condition</td>
<td>15</td>
</tr>
<tr>
<td>3.3</td>
<td>Phosphorus</td>
<td>16</td>
</tr>
</tbody>
</table>
Chapter 4

Materials and methods

4.0 Isolation of microalgae
4.1 DNA isolation
4.2 PCR amplification
4.3 Polyethylene bag photobioreactor (PBR)
4.4 Light effects on biomass, lipid and carbohydrate production

4.5 Effect of fluctuating light intensity on biomass, lipid and carbohydrate production

4.6 ILIS

4.7 Time course profile of lipid, carbohydrate and DCW of microalgae and nitrate level in culture medium under optimum illumination conditions

4.8 Curtailing medium acidification through NaHCO₃ addition

4.9 Nitrogen forms and levels effect on DCW, lipid and carbohydrate production

4.10 Phosphorus and iron effect on DCW, lipid and carbohydrate production

4.11 Effect of iron supplementation during LEGP on DCW, lipid and carbohydrate production

4.12 Salt and organic carbon addition effect on DCW, lipid and carbohydrate production

4.13 Effect of inoculum concentration on DCW and lipid production with ammonium and nitrate

4.14 Light effects on DCW and lipid production in nitrogen depleted medium with NaHCO₃ addition

4.15 ISAS

4.16 Analytical procedures

4.17 Dry cell weight determination (DCW)
Chapter 5

5.0 Results and Discussion

5.1 Molecular identification of microalgae

5.2 Light effects on Desmodesmus sp. VIT biomass production

5.3 Light effects on Desmodesmus sp. VIT lipid and carbohydrate production

5.4 Effect of fluctuating light intensity on biomass production

5.5 Effect of fluctuating light intensity on lipid and carbohydrate production

5.6 ILIS effect on biomass production

5.7 ILIS effect on lipid and carbohydrate production

5.8 Time course profile of lipid, carbohydrate, DCW of Desmodesmus sp. VIT and nitrate level of culture medium under 16:08 h photoperiod regime

5.9 Time course profile of lipid, carbohydrate, DCW of Desmodesmus sp. VIT and nitrate level of culture medium under fluctuating light intensity simulating intermediate overcast sky condition

5.10 Time course profile of lipid, carbohydrate, DCW of Desmodesmus sp. VIT and nitrate level of culture medium under ILIS

5.11 DCW and medium pH changes during Desmodesmus sp. VIT growth on ammonium chloride in unbuffered medium

5.12 Desmodesmus sp. VIT growth on ammonium chloride in HEPES buffered medium

5.13 Effect of NaHCO₃ addition on medium pH during Desmodesmus sp. VIT growth on ammonium chloride
5.14 Desmodesmus sp. VIT growth on ammonium chloride with NaHCO₃ addition

5.15 Lipid content and carbohydrate content of control cultures

5.16 Lipid content and carbohydrate content of HBM cultures

5.17 Lipid content and carbohydrate content of Desmodesmus sp. VIT on ammonium chloride with NaHCO₃ addition

5.18 Growth of Desmodesmus sp. VIT on urea

5.19 Lipid production of Desmodesmus sp. VIT on urea

5.20 Carbohydrate production of Desmodesmus sp. VIT on urea

5.21 Growth of Desmodesmus sp. VIT on sodium nitrate

5.22 Lipid and carbohydrate production of Desmodesmus sp. VIT on sodium nitrate

5.23 Growth of Desmodesmus sp. VIT on potassium nitrate

5.24 Lipid and carbohydrate production of Desmodesmus sp. VIT on potassium nitrate

5.25 Growth of Desmodesmus sp. VIT on iron

5.26 Lipid and carbohydrate production of Desmodesmus sp. VIT on iron

5.27 Growth of Desmodesmus sp. VIT on phosphorus

5.28 Lipid and carbohydrate production of Desmodesmus sp. VIT on phosphorus

5.29 Growth of Desmodesmus sp. VIT with iron supplementation during LEGP

5.30 Lipid and carbohydrate production of Desmodesmus sp. VIT with iron supplementation during LEGP

5.31 Growth of Desmodesmus sp. VIT with salt addition during LEGP

5.32 Lipid content and carbohydrate content of Desmodesmus sp. VIT with salt addition during LEGP

5.33 Growth of Desmodesmus sp. VIT with organic carbon addition during LEGP

viii
5.34 Lipid content and carbohydrate content of *Desmodesmus* sp. VIT with organic carbon addition during LEGP

5.35 Effect of pH on *Desmodesmus* sp. VIT biomass productivity and DCW

5.36 Effect of pH on *Desmodesmus* sp. VIT lipid production

5.37 Effect of NaHCO₃ on *Desmodesmus* sp. VIT growth and lipid production in nitrogen depleted medium

5.38 ISAS

5.39 Light effects on *Desmodesmus* sp. VIT growth and lipid production in nitrogen depleted medium

5.40 Inoculum size effects on growth in nitrate

5.41 Inoculum size effects on growth and lipid production on ammonium

Summary and Conclusions

References