CONTENTS

CHAPTER No.
I

INTRODUCTION TO VIBRATIONAL SPECTROSCOPY

1.1 Introduction

1.2 Vibrational Spectroscopy

1.3 Infrared Spectroscopy
   1.3.1 Infrared Activity

1.4 Raman Spectroscopy
   1.4.1 Quantum Theory of Raman Effect
   1.4.2 Raman Activity

1.5 Selection Rules for infrared and Raman Spectra

1.6 Molecular Force Constants and its significance

1.7 Vibrations of Polyatomic molecules

1.8 Group Theory and Molecular vibrations
   1.8.1 Molecular symmetry and point groups

1.9 Vibrational Assignment and Group frequencies

1.10 Factors influencing Vibrational frequencies

1.11 Ultraviolet Spectroscopy
   1.11.1 Principles of UV absorption Spectroscopy
   1.11.2 Types of electronic transitions
   1.11.3 Factors affecting the position of $\lambda_{\text{max}}$

References

II

QUANTUM CHEMICAL CALCULATIONS AND NORMAL COORDINATE ANALYSIS

2.1 Introduction

2.2 Molecular Mechanics

2.3 Electronic structure methods
   2.3.1 Uses of Ab-initio methods

2.4 Density Functional Theory
   2.4.1 Density Functional Theory using Hohenberg and Kohn Theorem

2.5 Basis set
4.3 Computational methods

4.4 Results and discussion

4.4.1 Molecular geometry
4.4.2 Potential Energy Scan
4.4.3 Vibrational Spectral Analysis
4.4.4 Natural Bond Analysis
4.4.5 Frontier molecular orbitals (FMOs)
4.4.6 Molecular electrostatic Potential
4.4.7 Thermodynamic properties
4.4.8 Mulliken atomic charges
4.4.9 UV-vis analysis

4.5 Conclusion

References

V QUANTUM CHEMICAL CALCULATIONS ON VIBRATIONAL AND ELECTRONIC STRUCTURE OF 3-(4-METHOXYBENZOOYL) PROPIONIC ACID

5.1 Introduction
5.2 Experimental details
5.3 Computational methods
5.4 Results and discussion

5.4.1 Molecular geometry
5.4.2 Potential Energy Scan
5.4.3 Vibrational Spectral Analysis
5.4.4 Natural Bond Analysis
5.4.5 Frontier molecular orbitals (FMOs)
5.4.6 Molecular electrostatic Potential
5.4.7 Thermodynamic properties
5.4.8 Mulliken atomic charges
5.4.9 UV-vis analysis

5.5 Conclusion

References
**VI** MOLECULAR STRUCTURE, SPECTROSCOPIC STUDIES (FT-IR AND FT-RAMAN), HOMO-LUMO AND NBO ANALYSIS OF 3-ETHOXY-4-HYDROXY BENZALDEHYDE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>144</td>
</tr>
<tr>
<td>6.2 Experimental details</td>
<td>146</td>
</tr>
<tr>
<td>6.3 Computational methods</td>
<td>146</td>
</tr>
<tr>
<td>6.4 Results and discussion</td>
<td>148</td>
</tr>
<tr>
<td>6.4.1 Molecular geometry</td>
<td>148</td>
</tr>
<tr>
<td>6.4.2 Potential Energy Scan</td>
<td>150</td>
</tr>
<tr>
<td>6.4.3 Vibrational Spectral Analysis</td>
<td>150</td>
</tr>
<tr>
<td>6.4.4 Natural Bond Analysis</td>
<td>158</td>
</tr>
<tr>
<td>6.4.5 Frontier molecular orbitals (FMOs)</td>
<td>161</td>
</tr>
<tr>
<td>6.4.6 Molecular electrostatic Potential</td>
<td>161</td>
</tr>
<tr>
<td>6.4.7 Thermodynamic properties</td>
<td>162</td>
</tr>
<tr>
<td>6.4.8 Mulliken atomic charges</td>
<td>164</td>
</tr>
<tr>
<td>6.4.9 UV-vis analysis</td>
<td>165</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>167</td>
</tr>
<tr>
<td>References</td>
<td>181</td>
</tr>
</tbody>
</table>

**VII** SPECTROSCOPIC STUDIES (FT-IR AND FT-RAMAN), HOMO-LUMO AND MESP ANALYSES OF 2-HYDROXY-5-NITROBENZALDEHYDE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>185</td>
</tr>
<tr>
<td>7.2 Experimental details</td>
<td>187</td>
</tr>
<tr>
<td>7.3 Computational methods</td>
<td>187</td>
</tr>
<tr>
<td>7.4 Results and discussion</td>
<td>189</td>
</tr>
<tr>
<td>7.4.1 Molecular geometry</td>
<td>189</td>
</tr>
<tr>
<td>7.4.2 Vibrational Spectral Analysis</td>
<td>190</td>
</tr>
<tr>
<td>7.4.3 Natural Bond Analysis (NBO)</td>
<td>198</td>
</tr>
<tr>
<td>7.4.4 Frontier molecular orbitals (FMOs)</td>
<td>199</td>
</tr>
<tr>
<td>7.4.5 Molecular electrostatic Potential (MSEP)</td>
<td>201</td>
</tr>
<tr>
<td>7.4.6 Thermodynamic properties</td>
<td>202</td>
</tr>
</tbody>
</table>
8.1 Introduction 223
8.2 Experimental details 225
8.3 Computational methods 225
8.4 Results and discussion 227
  8.4.1 Molecular geometry 227
  8.4.2 Potential Energy Scan 229
  8.4.3 Vibrational Spectral Analysis 229
  8.4.4 Natural Bond Analysis 235
  8.4.5 Frontier molecular orbitals (FMOs) 236
  8.4.6 Molecular electrostatic Potential 236
  8.4.7 Thermodynamic properties 237
  8.4.8 Mulliken atomic charges 239
  8.4.9 UV-vis analysis 241
8.5 Conclusion 243
References 254
LIST OF PUBLICATIONS 258