Contents

Abstract i

List of Figures iv

List of Tables viii

Nomenclature x

1 Introduction 1
 1.1 Conventional Metal Pouring Process 2
 1.1.1 Typical Metal Pour Types 3
 1.1.2 Bottom Pour Casting Process 5
 1.2 Problem Description 7
 1.3 Aims and Objectives 7
 1.3.1 Aims 7
 1.3.2 Objectives 7

2 Theory and Background Details 9
 2.1 Brief Defect Review and Examples of Defects in Casting Processes 9
 2.1.1 Generalised Defects in Casting[37] 10
 2.1.1.1 Gas Defects 11
 2.1.1.2 Shrinkage Defects 13
 2.1.1.3 Molding Material Defects 14
 2.1.1.4 Pouring Metal and Metallurgical Defects 15
 2.1.2 Fluidity Difference in SS 304, Cast Iron and Brass,(For Comparison Only) 20
 2.2 Introduction to Investment Casting Process 23
 2.2.1 Global Casting Processes and Basic Categorization 23
 2.2.2 Investment Casting Process 23
 2.2.3 Defects Related to Manual Pour in Small Investment Casting Industry 29
 2.2.4 Bottom Pour and Investment Castings 31
3 Literature Review

3.1 Automation in Casting Industry in General 33
3.2 Investment Casting Process and Related Automation 35
3.3 Pour System Automation/Bottom Pour for Pour for Low Carbon Alloy Steels 36
3.4 Ceramic Coatings/Composites for Minimal Heat Transfer 36
3.5 Heat Transfer of Molten Metal and Preheated Shells 38

4 Plan of Work

4.1 Methodology with Suggested Automation 40
4.2 Selection of the Suitable Foundry For Experimentation 41
 4.2.1 Siddhalaxmi Engineering Pvt Ltd, Solapur 41
 4.2.2 Problems Related to Defect Rejection and Data Analysis 47
4.3 Selection of Part For Experimentation 48
4.4 Modification Using Automation Techniques 52
 4.4.1 Merits and Demerits of Current Manual Process and Modified Bottom Pour Process 55

5 Experimentation Details

5.1 Design of Experiment 57
5.2 Selection of Variable Parameters and Ranges 58
5.3 Experiment Details 59
5.4 Details of Automation and Changes to the Current Process for Experimentation 60
 5.4.1 Gantry Crane Set up with X, Y, Z Movements 60
 5.4.2 Details of New Bottom Pour Ladle Construction 62
 5.4.2.1 Phases for Construction of Ladle 62
 5.4.2.2 Design of ladle 63
 5.4.3 Special Coating Used in Ladle 68
 5.4.4 Details of Spring Introduced for Easy Control and Back Up Force for Pour Handle 68
 5.4.5 Pour Height Control as a Variable 71
 5.4.6 Gas Nozzle to Preheat The Ladle 72
 5.4.7 Non-Contact Temperature Measurement Laser Gun 74
5.5 Experimental Procedure for experiment 76

6 Data Analysis

6.1 Data Analysis 81
6.2 Variable and Response Correlation Equations and Graphs 82
6.3 Correlation Statistic for Every Response ... 83
6.3.1 Response 1 - % Inclusions ... 83
6.3.2 Response 2 - % Cold Shuts ... 85
6.3.3 Response 3: Hardness (BHN) .. 87
6.3.4 Response 4: Surface Finish (RA) .. 89
6.3.5 Response 5: Tensile Strength (MPa) ... 91
6.4 Data Tables for Responses .. 92
6.4.1 Surface Hardness Data ... 92
6.4.2 Surface Finish Data ... 93
6.4.3 Defect Data Collection – 2 Shells per Experiment (Inclusions and Castings) ... 94

7 Optimization, Summary and Future Scope of Work 107
7.1 Optimization of the Mathematical Model ... 107
7.1.1 Optimization Using Genetic Algorithm 107
7.1.2 Constructing a Model ... 108
7.1.3 Aim of The Optimization .. 109
7.1.4 Selecting Software (MATLAB) .. 110
7.1.5 Optimization Algorithm and Code Writing Sequencey 110
7.2 Summary of Experimentation .. 114
7.3 Future Scope ... 117

8 Conclusions ... 118

References .. 121

Annexure .. 127

Annexure-A: Publications .. 127

Annexure-B: Defect wise rejection data collection 128

Annexure-C: Mechanical properties data from Accurate laboratory 145

Annexure-D: Surface finish data from Accurate laboratory 153

Annexure-E: LCF 384A data super heat a supreme 156

Annexure-F:Optimization code and optimizations code run results 158