DECLARATION

I, R. Balamurugan hereby declare that this thesis entitled “Antidiabetic Activity of Lippia nodiflora L – A medicinal plant” is a record of independent research work done by me during the period of study under the supervision and guidance of Dr. S. Ignacimuthu, s.j., Director, Entomology Research Institute, Loyola College, Chennai- 600034.

October 8, 2012

R. Balamurugan

Chennai (Candidate)
GENERAL INTRODUCTION
CHAPTER I
CHAPTER II
CHAPTER III
CHAPTER IV
CHAPTER V
CHAPTER VI
SUMMARY & CONCLUSION
LIST OF PUBLICATIONS
GLOSSARY OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine aminotransferase</td>
</tr>
<tr>
<td>ANOV</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ANSA</td>
<td>Aminonaphthol Sulphonic acid</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate aminotransferase</td>
</tr>
<tr>
<td>ACP</td>
<td>Acid phosphatase</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP- binding cassette</td>
</tr>
<tr>
<td>b.w</td>
<td>Body weight</td>
</tr>
<tr>
<td>BGL</td>
<td>Blood Glucose Level</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DTNB</td>
<td>Dithionitroso bisbenzoic acid</td>
</tr>
<tr>
<td>DNPH</td>
<td>Dinitrophenylhydrazine</td>
</tr>
<tr>
<td>DPA</td>
<td>Diphenylamine</td>
</tr>
<tr>
<td>DEE</td>
<td>Diethyl Ether</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ED</td>
<td>Effective Dose</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acid</td>
</tr>
<tr>
<td>FPG</td>
<td>Fasting Plasma Glucose</td>
</tr>
<tr>
<td>GSH-Px</td>
<td>glutathione peroxidase</td>
</tr>
<tr>
<td>GSH</td>
<td>Reduced glutathione</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography Mass Spectra</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>HbA₁C</td>
<td>Glycosylated haemoglobin</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HP</td>
<td>Lipid hydroperoxides</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin Dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>IU</td>
<td>International unit</td>
</tr>
<tr>
<td>IDF</td>
<td>International Diabetes Federation</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired Glucose Tolerance</td>
</tr>
<tr>
<td>IFG</td>
<td>Impaired Fasting Glucose</td>
</tr>
<tr>
<td>IR</td>
<td>Infra Red</td>
</tr>
<tr>
<td>LDL-C</td>
<td>Low Density Lipoprotein Cholesterol</td>
</tr>
<tr>
<td>LPO</td>
<td>Lipid peroxidation</td>
</tr>
<tr>
<td>LD</td>
<td>Lethal Dose</td>
</tr>
<tr>
<td>MASS</td>
<td>Mass spectroscopy</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>MRP-1</td>
<td>Human multidrug resistance protein 1</td>
</tr>
<tr>
<td>(NAD)</td>
<td>Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADH</td>
<td>Reduced Nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NBT</td>
<td>Nitroblue tetrazolium</td>
</tr>
<tr>
<td>NIDM</td>
<td>Non-insulin dependent diabetes mellitus</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance.</td>
</tr>
<tr>
<td>NGS</td>
<td>Normal goat serum</td>
</tr>
</tbody>
</table>
O₂*: Superoxide radical
OH*: Hydroxyl radical
OGTT: Oral Glucose Tolerance Test
PBS: Phosphate Buffer Solution
PL: Phospholipids
PMS: Phenazine methosulphite
ROS: Reactive Oxygen Demand
SD: Standard Deviation
SOD: Superoxide Dismutase
Na₂CO₃: Sodium bicarbonate
H₂SO₄: Sulphuric Acid
NaOH: Sodium carbonate
SPSS: Statistical Package for Social Sciences
STZ: Streptozotocin
TBARS: Thiobarbituric acetic acid
TC: Total Cholesterol
TG: Triglycerides
TLC: Thin Layer Chromatography
TEA: Triethanolamine
UDP: Uridine Diphosphate
VCCLAB: Virtual Computational Chemistry Laboratory
VLDL-C: Very Low Density Lipoprotein cholesterol
WHO: World Health Organization
DEDICATED TO MY BELOVED PARENTS
CONTENTS

<table>
<thead>
<tr>
<th>CHAPTERS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>Signs and symptoms</td>
<td></td>
</tr>
<tr>
<td>Prevelance of Diabetes</td>
<td></td>
</tr>
<tr>
<td>Diagnosing diabetes</td>
<td></td>
</tr>
<tr>
<td>Diabetes and metabolic abnormalities</td>
<td></td>
</tr>
<tr>
<td>Diabetes and carbohydrate metabolism</td>
<td></td>
</tr>
<tr>
<td>Diabetes and lipid metabolism</td>
<td></td>
</tr>
<tr>
<td>Diabetes and protein metabolism</td>
<td></td>
</tr>
<tr>
<td>Oxidative Stress in Diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>Indigenous treatment for diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>Objectives of the Present Study</td>
<td></td>
</tr>
<tr>
<td>CHAPTER –I :</td>
<td></td>
</tr>
<tr>
<td>Plant collection, extraction and screening for antihyperglycemic effect</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>11</td>
</tr>
<tr>
<td>Lippia nodiflora (L.)</td>
<td></td>
</tr>
<tr>
<td>Plant and distribution</td>
<td></td>
</tr>
<tr>
<td>Traditional use</td>
<td></td>
</tr>
<tr>
<td>Medicinal use</td>
<td></td>
</tr>
<tr>
<td>Chemical Compounds Identified From Lippia nodiflora (L.)</td>
<td></td>
</tr>
<tr>
<td>Materials And Methods</td>
<td></td>
</tr>
<tr>
<td>Plant material</td>
<td></td>
</tr>
<tr>
<td>Chemicals</td>
<td></td>
</tr>
<tr>
<td>Preliminery Phytochemical analysis</td>
<td></td>
</tr>
<tr>
<td>Experimental animals</td>
<td></td>
</tr>
<tr>
<td>Induction of diabetes mellitus</td>
<td></td>
</tr>
<tr>
<td>Experimental design and treatment schedule</td>
<td></td>
</tr>
</tbody>
</table>
Biochemical estimation
 Separation of Plasma
 Separation of serum
 Estimation of Fasting Plasma Glucose levels (Glucose Oxidase
 peroxidase method – Trinder, 1969)
 Assay of Plasma Insulin (Rats)
 Lipid profile: Total cholesterol, Triglycerides, HDL- cholesterol.

Results
Discussion
Conclusion
References

CHAPTER II
Isolaton and characterization of antidiabetic active principle from Lippia
nodiflora (L.)

INTRODUCTION
Phytoconstituents with hypoglycaemic potentials
Flavonoids
 Classification of flavinoids
Alkaloids
Terpenoids and steroids
Polysaccharides
Insulin like compounds, polypeptides and aminoacids
Sterols
Unsaturated fatty acids
Miscellaneous
Antidiabetic compounds isolated from medicinal plants

Materials and methods
Plant collection
Plant extraction
Liquid-liquid partition of active methanol extract
Column chromatography and compound isolation
Source of fine chemicals
Experimental animals
Induction of diabetes mellitus
Experimental design and treatment schedule to screen the Diethyl Ether
Screening of fractions isolated from diethyl ether active part
 Biochemical estimation Separation of Plasma
 Estimation of Fasting Plasma Glucose levels (Glucose Oxidase peroxidase method – Trinder, 1969)
Identification of active compound by spectroscopic methods

Results
Discussion
Conclusion
References

CHAPTER -III
Antidiabetic Acitivity of γ-sitosterol using streptozotocin induced diabetic rats

Introduction
Materials and Methods
Experimental animals
Chemicals and biochemical measurements
Antibodies
Dose Determination
Experimental protocol for further biochemical study Biochemical Determination
 Estimation of blood glucose
 Estimation of plasma insulin
 Estimation of haemoglobin
 Estimation of glycosylated haemoglobin (HbA1c)
 Estimation of glycogen
 Estimation of tissue protein
 Carbohydrate Metabolic Enzymes
Glucokinase Assay (Hexokinase)
Glucose 6-Phosphatase Assay
Fructose 1, 6-bisphosphatase
Hepatic Glycogen Synthase and Glycogen Phosphorylase Assay
Glucose 6-phosphate Dehydrogenase Assay

Lipid Peroxidation Parameters
Estimation of TBARS
Estimation of lipid hydroperoxides

Non Enzymatic antioxidants
Estimation of reduced glutathione (GSH)
Estimation of Ascorbic acid (Vitamin C)
Estimation of α-tocopherol (Vitamin E)

Enzymatic antioxidants
Assay of superoxide dismutase
Estimation of catalase
Estimation of glutathione peroxidase

Analysis Of Lipid Profile
Extraction of lipids
Estimation of total cholesterol
Estimation of HDL – cholesterol
Estimation of VLDL- and LDL-cholesterol
Estimation of free fatty acids
Estimation of triacylglycerol

Estimation Of Marker Enzymes
Assay of aspartate aminotransferase
Assay of alanine aminotransferase
Estimation of alkaline phosphatase

Estimation Of Nephritic Markers
Estimation of urea
Estimation of Uric acid
Estimation of Creatinine
Estimation Of Protein Profile
 Estimation of total protein and albumin
 Estimation of globulin
Estimation Of Glycoprotein Components
 Estimation of total hexoses
 Estimation of Hexoseamine
 Estimation of Sialic acid
 Estimation of Fucose
Insulin secretion experiments
Histological Examination
 Light microscopic studies-paraffin method
 Immunohistochemical analysis of Pancreas
Results
Discussion
Conclusion
References
CHAPTER 4
Molecular docking of \(\gamma\)-sitosterol with some targets related to diabetes
 Introduction
 Materials and methods
 Docking analysis
 Results and Discussion
 Conclusion
 References
CHAPTER 5
Antifeedant activity of isolated compound \(\gamma\)-sitosterol against *Helicoverpa armigera* hub. (Lepidoptera: Noctuidae)
 Introduction
 Materials And Methods
 Tested material
 Insects
Helicoverpa armigera
Concentrations and antifeedant bioassay

Results
Discussion
Conclusion
References

CHAPTER 6
Acute and chronic toxicity studies of γ- sitosterol in normal rats

Introduction
Materials and methods
Animals
Test for Drug
Acute toxicity test
Chronic toxicity study
Collection of plasma and serum
Haematological parameters
Estimation of haemoglobin
Red blood cell count
White blood cell count
Serum enzyme markers
Estimation of Nephritic markers
Histopathological studies

Results
Discussion
Conclusion
References

SUMMARY AND CONCLUSION

PUBLISHED PAPERS
Acknowledgement

First I am very grateful to Rev. Dr. S. Ignacimuthu, S.J., Director, Entomology Research Institute, Loyola College, Chennai, Tamilnadu, India for providing me an opportunity to do my doctoral programme under his guidance and supervision. His constant support not only in providing all the facilities to carry out my investigation but also in providing help in sharing his experience and knowledge encouragement me to carry out my work carefully.

I also owe my thanks to Indian Council of Medical Research (ICMR), New Delhi for financial assistance.

I am very much thankful to Dr. K. Balakrishna, (CSMDRI, Arumbakkam, Chennai) for his assistance and necessary interpretations of spectral data and also for sharing his expertise on phytochemical analysis.

I owe my special thanks to Dr. V. Duraipandian, King Saud University, Saudi for his constant encouragement and his interest shown towards my work.

I wish to express my profound thanks to Mr. M. Karunairaj, Orchid Pharmaceuticals for HPLC spectral data and rendering help for the successful completion of my work.

I owe my special thanks to Dr. M. Gabriel Paulraj, Scientist, Entomology Research Institute, Loyola College, Chennai for his support to finish my work successfully.

My heartfelt thanks and gratitude goes to Dr. C. Muthu, Office Secretary cum Librarian, ERI, Loyola College for all his timely help to complete the various demanding tasks and neat execution of the thesis.

My special thanks to Mr. Antony Stalin for his valuable work in bioinformatics part of my work.

I extend my thanks to Mr. S. Lingathurai for the completion of my antifeedant work and his useful contribution in alignment work of my thesis.

I thank Mr. P. V. Ramachandran for his constant encouragement, help and cooperation for the successful completion of the thesis.
I thank Dr. S. Ezilvendan, Scientist, Mahavir Cancer Institute, Bihar for his help and support.

I extend my gratitude to Mr. G. Nattudurai, ERI, Loyola College, Chennai for his help and support.

I thank Dr. M. Devi, Mr. Anandakumar for their constant support and encouragement throughout my study.

I would like to thank all of my colleagues at ERI for their cooperation and encouragement in various ways during the course of my investigation.

The help and support rendered by Mr. D. Baskar, Mr. Kothandum and Mr. Victor Jothy during my investigation is greatly acknowledged.

My special thanks to my loving parents Mr. C. Rangachari, Mrs. R. Jayamani, my brother R. Ajeethkumar and my sister R. Anitha for their moral support and encouragement throughout my study.

(R. BALAMURUGAN)