8. CONCLUSION

The widespread occurrence of MDR-TB and TB-HIV co-infection have led to a great threat to global health. In this scenario, the importance of traditional phyto-medicine is being re-analysed for the discovery of new molecules as effective drugs against TB. Plants remain as untapped reservoirs for potential active chemical compounds and their potential as templates for new scaffolds of drugs has opened up renewed interest. Andrographolide isolated from *A. paniculata* shows promise as a potent antimycobacterial compound. Relatively less cytotoxic effect exhibited by andrographolide adds on importance. The probability of this compound being active against latent TB adds value further to the present work. Moreover, as the activity of the compound andrographolide as immunemodulatory, anti-inflammatory and anti-infective had been well established already, the preclinical tests must be on to take it to the next level. The hurdles related to the bulk production of the pure compound for clinical testing also must have been circumvented. This situation is advantageous and will drastically minimize the time taken for the drug to reach the level of human trials to establish its capability as an anti-TB drug. The uniqueness of the findings of this research lies in this aspect and is sure to take the research to the forefront benefitting the mankind.