CONTENTS

ACKNOWLEDGEMENT

ABSTRACT

TEXT

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter I</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Location</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General statement</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Previous work</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Methods of laboratory study</td>
<td>4</td>
</tr>
<tr>
<td>Chapter II</td>
<td>Geography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physiography</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Eastern division</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Central division</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Western division</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Weathering</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Drainage</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Climate</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Rainfall</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Temperature</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Vegetation</td>
<td>10</td>
</tr>
</tbody>
</table>
CHAPTER III: OUTLINE OF THE GEOLOGY OF TIMJINELWIL

Introduction.. 14
Stratigraphic position and rocks of the area.. 14
Description of rock groups.. 15
Metamorphism.. 17
Structure.. 17
Plutonic history.. 18

CHAPTER IV: DIAGNOSIS

Introduction.. 19
Field characteristics.. 19

PETROGRAPHY.. 32

1. The petrography of pelites.. 32
 a) Sillimanite gneiss.. 33
 b) Garnetiferous-biotite-sillimanite gneiss.. 34
 c) Garnet gneiss with spinel.. 35

2. The petrography of semipelites.. 35
 a) Garnet gneiss.. 36
 b) Garnetiferous biotite gneiss.. 36
 c) Biotite gneiss.. 37

3. The petrography of garnetiferous-granite gneiss.. 38
4. **The petrography of psammites**
 - Magnetite quartzites

5. **The petrography of calcareous members**
 - a) wollastonite-bearing granulite
 - b) diopside-bearing granulite
 - c) forsterite-bearing marble and its variants

MINERALOGY

<table>
<thead>
<tr>
<th>Pelites</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotite</td>
<td>46</td>
</tr>
<tr>
<td>Garnet</td>
<td>47</td>
</tr>
<tr>
<td>Sillimanite</td>
<td>47</td>
</tr>
<tr>
<td>Spinel</td>
<td>47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAGIPELITES</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotite</td>
<td>48</td>
</tr>
<tr>
<td>Garnet</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CALCAREOUS MEMBERS</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wollastonite</td>
<td>49</td>
</tr>
<tr>
<td>Diopside</td>
<td>50</td>
</tr>
<tr>
<td>Scapolite</td>
<td>50</td>
</tr>
<tr>
<td>Grossularite</td>
<td>50</td>
</tr>
<tr>
<td>Forsterite</td>
<td>51</td>
</tr>
<tr>
<td>Chondradite</td>
<td>51</td>
</tr>
</tbody>
</table>
Vesuvianite .. 51
Fluorite .. 52
Apatite .. 52

PETROCHEMISTRY .. 52

PETROGENESIS .. 54

Pelites and semipelites .. 54
Garnetiferous granite gneiss .. 58
Psammites .. 59
Calcareous members .. 59

CHAPTER V : CHARnockite Series

Introduction .. 62
Field Characterization .. 62

PETROGRAPHY .. 71
Nomenclature .. 71
Ultrabasic division .. 72
Basic division .. 73

Hypersthene-augite-labradorite-
granulite .. 73

Hornblende-hypersthene-augite-
andesine-granulite .. 74

Biotite-hypersthene-augite-
andesine granulite .. 75

Garnetiferous-hypersthene-augite-
andesine granulite .. 76
<table>
<thead>
<tr>
<th>Contaminated basic member</th>
<th>76</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase amphibolite</td>
<td>77</td>
</tr>
<tr>
<td>Acid division</td>
<td>78</td>
</tr>
<tr>
<td>Migmatitic enderbite</td>
<td>79</td>
</tr>
<tr>
<td>Enderbite</td>
<td>80</td>
</tr>
<tr>
<td>Garnetiferous biotite enderbite</td>
<td>81</td>
</tr>
<tr>
<td>Contaminated enderbite</td>
<td>82</td>
</tr>
<tr>
<td>Mylonitic enderbite</td>
<td>82</td>
</tr>
<tr>
<td>Enderbite pegmatite</td>
<td>83</td>
</tr>
<tr>
<td>Xenoliths in enderbite</td>
<td>84</td>
</tr>
<tr>
<td>Dark grey acid granulites and gneisses</td>
<td>85</td>
</tr>
<tr>
<td>Dark grey granodiorite</td>
<td>85</td>
</tr>
<tr>
<td>Dark grey adamellite</td>
<td>86</td>
</tr>
<tr>
<td>Dark grey granite</td>
<td>87</td>
</tr>
</tbody>
</table>

PETROCHEMISTRY

PETROGENESIS

Field characteristics | 94 |
Mineralogical evidence | 95 |
Petrographical evidence | 96 |
Petrochemical evidence | 98 |

CONCLUSION

| 99 |
CHAPTER VI: PINK GRANITES

Introduction ... 102
Field characteristics .. 103

PETROGRAPHY

Petrography of pink granites .. 109
Adamellite .. 110
Hornblende granite ... 111
Biotite granite .. 111
Leuco-granite ... 112
Crushed granite .. 113
Contaminated granite ... 113
Quartz-syenite .. 114
Pegmatite ... 115
Aplite .. 115

Petrography of inclusions of country rocks in pink granite 116

PETROCHEMISTRY .. 119

PETROGENESIS ... 123

Field characteristics ... 123
Petrological evidence .. 124
Petrochemical evidence .. 125
Structural evidence ... 125

DISCUSSION ... 126
CHAPTER VII: STRUCTURAL ASPECTS OF ROCK TYPES OF TIRJAN VALLI

Introduction .. 129
Foliation .. 129
Lineation .. 131
Minor folds .. 132
Crenulations .. 134
Joints .. 134
Slickensides .. 135
Faults .. 135
Structural pattern .. 136

CHAPTER VIII: SUMMARY AND CONCLUSION .. 137

BIBLIOGRAPHY ..
LIST OF ILLUSTRATIONS

1. Sketch map of South India showing the location of the thesis area.

2. Geological map of Tirunelveli, Tirunelveli District, Tamilnadu (In the back pouch of the thesis).

3. Sketch map showing the hills, plains, tanks and major rivers of the thesis area.

4. Sketch map showing the distribution of rock types of the thesis area.

5. Sketch map showing the distribution of Dharware of the thesis area.

6. ACP diagram for rocks with excess SiO$_2$ for sillimanite-almandine-orthoclase sub-facies of the almandine-amphibole facies.

6A. ACP diagram for rocks with excess SiO$_2$ for K-feldspar-cordierite-hornfels facies.

7. Sketch map showing the distribution of Charnockite Series of the thesis area.

8. Marker's variation diagram of the Charnockite Series of the thesis area.

9. ${(\text{Fe}^{2+} + \text{Fe}^{3+}) - \text{Mg}^{2+} - (\text{Na}^{+} + \text{K}^{+})}$ variation diagram of the members of the Charnockite Series of the thesis area.

10. $\text{Ca}^{2+} - \text{Mg}^{2+} - (\text{K}^{+} + \text{Na}^{+})$ variation diagram of the members of the Charnockite Series of the thesis area.
11. The variation diagram of the atomic proportions of the ultrabasic, basic member, enderbite and garnetiferous biotite-sillimanite gneiss plotted on the silicon basis.

12. AOF diagram for the members of the Charnockite Series (Granulite facies, with excess silica).

13. Miglioli variation diagram of the basic members of the Charnockite Series and plagioclase amphibolite.

14. (K-mg) Lassen and peak diagram for basic members of the Charnockite Series and plagioclase amphibolite of the thesis area.

15. mg-o variation diagram of the members of the Charnockite Series (After Leake, 1963).

16. The variation diagram showing the plots of 100 mg + (al-alk) + 0 = 100 (After Leake, 1963).

17. Harker's variation diagram of dark grey granodiorite gneiss, enderbite and dark grey granite gneiss.

18. Sketch map showing the distribution of granites of the thesis area.

19. Normative ternary diagram of Qz-Ab-Or.

20. Loss and gain variation diagram of granite and quartz-syenite.

21. The variation diagram of the atomic proportions of calo-granulite, quartz-syenite and pink granite plotted on the silicon basis.

22. Sketch map showing the structure of the rock types of the thesis area.

23. Stereographic projection of the poles of foliation planes and minor folds and axial plunge of major folds of the thesis area.
EXPLANATION TO PLATES

PLATE I:

Fig. 1 Field photograph of detached hills amidst plains, east of Reddiyapatti in the eastern division of the thesis area.

Fig. 2 Field photograph of scattered hills amidst plains in the central division of the thesis area.

Fig. 3 Field photograph showing prominent peaks of Kolundamamalai in the western division.

Fig. 4 Field photograph showing Manimuttar Dam in the western division.

Fig. 5 Field photograph showing Manimuttar water falls in the western division.

Fig. 6 Field photograph of the Talus covered slopes of the hill amidst plain south of Kumattur in the eastern portion of the central division.

Fig. 7 Field photograph showing spheroidal weathering displayed by the basic members of the Charnockite Series at Kallidaikurichi in the western portion of the central division.

PLATE II:

Fig. 1 Field photograph showing the moderate plunge of the antiform two miles south of Kallidaikurichi in the western division of the thesis area.

Fig. 2 Field photograph showing pimples of pink garnet in the graphite bearing pelitic member one mile south of Devanallur in the central division.
Fig. 3 Field photograph of garnet gneiss showing banding owing to the presence of veins of pegmatite along its foliation planes, at Kallidaikurichi in the western division.

Fig. 4 Field photograph showing massive type of garnet gneiss with porphyroblast of garnet two miles south of Kallidaikurichi in the western division.

Fig. 5 Field photograph showing intercalation of garnetiferous biotite gneiss with biotite gneiss (dark grey) one mile north of Gopalasamudram in the central division.

Fig. 6 Field photograph of biotite gneiss showing banding owing to the presence of narrow vein of pink granite and pegmatite at Kunnattur in the eastern division.

Fig. 7 Field photograph of magnetite quartzite showing distinct foliation on the summit of Kunnattur hill adjacent to Kunnattur in the eastern portion of the central division.

Fig. 8 Field photograph of magnetite quartzite showing the massive variety, characterised by coarse and fine grains of quartz and lumps of magnetite.

Fig. 9 Field photograph of quartzite showing well developed joints four furlongs east of Reddiyapatti in the eastern portion of the eastern division.

Fig. 10 Field photograph of chondradite marble showing a southerly dip at Singikulam, in the central portion of the central division.
Plate II Fig. 11 Field photograph of banded wollastonite-scapolite-calcogranulite carrying with vesuvianite one mile west of Ambasamudram.

Fig. 12 Field photograph showing segregations of calc-diopside granulite in crystalline limestone near Pattamadai in the eastern portion of the western division.

PLATE III Fig. 1 Photo-micrograph of garnetiferous biotite sillimanite gneiss (A.199) showing stumpy prisms of sillimanite grains of garnet and laths of biotite occurring amidst quartes and feldspars. X Nicols. X 20.

Fig. 2 Photo-micrograph of garnetiferous biotite gneiss (A.154) showing plates and grains of oligoclase, granular quartes, grains of garnet and laths of biotite. X Nicols. X 20.

Fig. 3 Photo-micrograph of garnetiferous granite gneiss (A.20) showing broad plates of microcline-perthite, granular quartes and grains of garnet. X Nicols. X 20.
Plate III

Fig. 4 Photo-micrograph of wollastonite—plagioclase-calce-granulite (A.251) showing plates of plagioclase laths of phlogopite, bars of graphite and irregular prisms of wollastonite and plates of calcite. X Nicols. X 20.

Fig. 5 Photo-micrograph of diopside-scapolite-grossularite—calce granulite (A.40) showing dark grains of grossularite irregular prisms of diopside, pale grey grains of scapolite clear grains of calcite. X Nicols. X 20.

Fig. 6 Photo-micrograph of forsterite marble (A.256) showing broad irregular grains of forsterite traversed by cracks and associated with plates of calcite. A lath of phlogopite occurs in the north central portion marginal to forsterite. X Nicols. X 67.

Fig. 7 Photo-micrograph of chondradite marble (A.253) showing broad plates of chondradite associated with subhedral grains of fluorite (dark in the centre) and plates of calcite. X Nicols. X 20.

Fig. 8 Photo-micrograph of wollastonite—bearing granulite, with vesuvianite (A.234) showing plates of calcite, tattered prisms of wollastonite, quartz vein and vesuvianite in the southern portion. X Nicols. X 20.

Plate IV

Fig. 1 Field photograph of narrow bands of basic members intercalated with Dharwar and pink granite, in the middle portion of Kolundamamalai in the western division.

Fig. 2 Field photograph of basic member occurring as boudins separated by narrow veins of pegmatite near Singikulam in the central portion of the central division.
Plate IV.

Fig. 3 Field photograph showing basic member of Charnockite Series traversed by veins of pink granites at the base of Kolundamamalai.

Fig. 4 Field photograph showing enderbite traversed by veins of pink granite south of Palayankottai in the eastern division.

Fig. 5 Field photograph showing the occurrence of enderbite as distinct masses in Vallimalai located two miles north-northwest of Govindapappi in the central portion of the western division.

Fig. 6 Field photograph showing the occurrence of enderbite as sills in garnetiferous biotite gneiss one mile south of Kallidaikurichi.

Fig. 7 Field photograph of enderbite occurring as narrow bands in semipelites and showing thickening along the nose of the minor antiform, north of Padmaneri in the eastern portion of the western division.

Fig. 8 Field photograph of pelitic xenoliths in enderbite one mile south of Kallidaikurichi in the western portion of the western division.

Fig. 9 Field photograph showing the occurrence of bands and patches of basic member in enderbite about half a mile east of Karandaneri in the south eastern portion of the central division.

Fig. 10 Field photograph showing enderbite cut across by granite, north of Karandaneri in the south eastern portion of the central division.
Plate IV

Fig. 11 Field photograph showing the band of enderbite immersed in pink granite, north of Singikulas in the central portion of the central division.

Fig. 12 Field photograph showing well developed vertical joints in the basic member of Charmookite Series half a mile south-west of Devsnallur, south western portion of the central division.

PLATE V

Fig. 1 Photo-micrograph of pyroxenite (A.117) showing broad prisms of hypersthene and plates of clinopyroxene and lumps of magnetite. X Nicols. X 20.

Fig. 2 Photo-micrograph of garnet-hypersthene-augite andesine granulite (A.205) showing twinned plates of plagioclase, clusters of pyroxene and dark patches of garnet. X Nicols. X 20.

Fig. 3 Photo-micrograph of contaminated basic member (A.252) showing prismatic prisms and grains of diopside associated with plates of labradorite. X Nicols. X 20.

Fig. 4 Photo-micrograph of plagioclase amphibolite (A.4) showing twinned plates of andesine and prisms of hornblende, dark lumps of magnetite occur marginal to hornblende. X Nicols. X 20.

Fig. 5 Photo-micrograph of garnetiferous biotite enderbite (A.12) showing elongate prisms of hypersthene, laths of biotite, dark grain of garnet with inclusions of quartz, twinned grains of andesine and granular quartz. X Nicols. X 20.
Fig. 6 Photo-micrograph of contaminated enderbite (A. 149) showing plates of antiperthite, grains of andesine, granular quartzs and sphenes in the centre with irregular grains of diopside. X Nicols. X 20.

Fig. 7 Photo-micrograph of biotite granodiorite gneiss (A. 121) showing laths of biotite, grains of plagioclase, plates of antiperthite and granular quartzs. X Nicols. X 20.

Fig. 8 Photo-micrograph of adamellite gneiss (A. 228) showing plates of myrmekite occurring interstitial to antiperthite and microcline-perthite and associated with granular quartzs. X Nicols. X 20.

Plate VI: Fig. 1 Field photograph showing biotite granite occurring as distinct masses around Kalakkadu in the souther portion of the western division.

Fig. 2 Field photograph showing massive granite devoid of banding one mile north east of Singikulam.

Fig. 3 Field photograph showing irregular contacts between pelites and semipelites and biotite granite. North of Gopalaasamudram.

Fig. 4 Field photograph showing pinch and swell structure displayed by semipelites occurring immersed in pink granite, half a mile north west of Ambasamudram.

Fig. 5 Field photograph showing sharp contact of pink granite and semipelites in the north-western portion and transitional contact in between granite and semipelite in the south-eastern portion north of Gopalaasamudram.
Plate VI

Fig. 6. Field photograph showing sharp and distinct contact of pink granite and enderbite. Two miles south of Gopalasamudram.

Fig. 7. Field photograph showing fragments of garnet gneiss occurring in pink granite. One mile north-west of Ambasamudram.

Fig. 8. Field photograph showing a narrow band of basic member of Charnockite Series occurring immersed in pink granite near Singikulam.

Fig. 9. Field photograph showing well developed sheet joints in pink granite one mile north east of Singikulam.

Fig. 10. Field photograph showing a narrow vein of pegmatite occurring in pink granite one mile north east of Singikulam.

Fig. 11. Field photograph showing the presence of patches of semipelites with porphyroblasts of garnet occurring in garnetiferous granite gneiss one mile north of Gopalasamudram.

Fig. 12. Field photograph showing the occurrence of clots of biotite in pegmatite traversing pelites and semipelites. One mile south of Devanallur.

Plate VII

Fig. 1. Photo-micrograph of Adamellite (A.137) showing plates of perthite and plagioclase with interstitial myrmekite and quartz grains.
Plate VII

Fig. 2 Photo-micrograph of xenoliths of garnetiferous granite gneiss (A.27) showing allotriomorphic texture. Microcline—perthite occurs as anhedral plates, quartz is present interstitial to perthite & garnet occurs as irregular grains (dark grains). X Nicols. X 20.

Fig. 3 Photo-micrograph of biotite granite (A.160) showing broad plates of microcline—perthite, interstitial quartz and laths of biotite. X Nicols. X 20.

Fig. 4 Photo-micrograph of xenolith of amphibolite (A.43) showing granular texture. Hornblende occurs as prismatic clusters interstitial to microcline—perthite. Granular quartz and laths of biotite are present associated with perthite. X Nicols. X 20.

Fig. 5 Photo-micrograph of xenolith of enderbite (A.84) showing antiperthite, perthite, granular quartz and garnet with a narrow rim of biotite. X Nicols. X 20.

Fig. 6 Photo-micrograph of hornblende granite (A.127) showing a xenomorphic granular texture. Plates of microcline—perthite are associated with granular quartz and prisms of hornblende. X Nicols. X 20.

Fig. 7 Photo-micrograph of quartz—syenite (A.44) showing xenomorphic granular texture. Plates of perthite are abundant granular quartz is very subordinate and hornblende occurs interstitial to perthite. X Nicols. X 20.
Plate VII Fig. 8 Photo-micrograph of pegmatite (A.247) showing plates of microcline characterized by cross-hatching. Muscovite occurs as laths interstitial to microcline. Granular quartz is associated with microcline. X Nicols. X 20.

Plate VIII: Fig. 1 Field photograph of garnetiferous biotite gneiss showing tight type of minor fold south of Devanallur. Enderbite occurs as a mantle around garnetiferous biotite gneiss and shows concordant and discordant relation to garnetiferous biotite gneiss.

Fig. 2 Field photograph of garnet gneiss displaying tight isoclinal fold at the base of Kolundamandalai. It is mantled by a narrow layer of enderbite.

Fig. 3 Field photograph of open type of folding displayed by garnet gneiss north of Gopalasamudram. Narrow vein of pegmatite occurs along the nose of the minor antiform.

Fig. 4 Field photograph of semi-pelite gneiss showing open type of 'M' or 'Z' shaped minor folds north of Gopalasamudram.

Fig. 5 Field photograph of the calcareous member occurs as a minor plunging antiform at Pattamadalai.

Fig. 6 Field photograph of magnetite quartzite showing tight type of minor fold in Kunnattur hill.

Fig. 7 Field photograph of basic member of Charnockite Series showing tight type of minor fold. The vein of pegmatite occurs along the axis of the minor fold. Near Devanallur.
Fig. 8 Field photograph of the open type of fold displayed by siliceous ribs occurring in the chondradite marble at Ambasamudram.

Fig. 9 Field photograph of basic member of Charnockite Series present in granite showing open type of folding which is delected in places by veins of pink granite at Singikulam.

Fig. 10 Field photograph of open type of minor folding displayed by granite vein occurring in enderbite, two miles west of Tirunelveli.

Fig. 11 Field photograph of sheared quartzites at the base of Reddiyapatti hill in the eastern portion of the eastern division.

Fig. 12 Field photograph of vertical walls of enderbite showing slicken sided surfaces in Kolundamamalai.
LIST OF TABLES

I The modes of the components of the Dharwars of the thesis area.

II Table showing chemical analysis of biotite present in biotite gneiss together with the distribution of ions recalculated on the basis of 24 (O, OH).

III Chemical analysis of garnet present in garnetiferous biotite gneiss together with the distribution of ions recalculated on the basis of 12 (O) atoms and molecular percentage of end members.

IV Chemical analyses of the Dharwars of the thesis area together with their norms.

V Modes of the components of Charnockite Series of the thesis area.

VI Chemical analyses of ultrabasic, basic and acid components of Charnockite Series of the thesis area together with their norms.

VII Chemical analyses of the plagioclase amphibolites of the thesis area and the analyses of the basic members of the Charnockite Series reproduced from Table VI.

VIII Chemical analyses of dark grey granodiorite and granite gneiss of the thesis area and the analysis of enderbite reproduced from Table VI.

IX Chemical analyses of the orthopyroxenes from basic and acid members of the Charnockite Series.
XI Modes of the components of pink granites of the thesis area.

XI Chemical analyses of granites of the thesis area and their norms together with the analysis of the calc-granulite associated with quartz-syenite and its norm.

XII Atomic proportions of the bases and silicon calculated to 1000, derived from the molecular proportions of the chemical analyses of pink granite and quartz-syenite.

XIII The gain and loss of the atoms from pink granite to quartz syenite.
ACKNOWLEDGMENT

I avail this opportunity of placing on record my deep sense of gratitude to Dr. M. Leelananda Rao, Professor of Geology and Geophysics, University of Madras for his guidance throughout the course of this work and rendering great help in the preparation of this thesis.

I avail this opportunity of thanking Drs. B.Rukmangada Reddy and D.Jayakumar and Sri M.Meyyappan for their assistance in the preparation of this thesis.
I thank Sri M.K.Samiraj for preparing thin sections.

My thanks are due to the authorities of the University of Madras for awarding the Junior Research Fellowship which facilitated in conducting this research.
ABSTRACT

The Geology around Tirunelveli is related to the Archaean complex. It is comprised of Dharwars, Charnockite Series and pink granites.

The Dharwars are characterised by metasediments and granite gneiss. They display sillimanite-almandine-orthoclase sub-facies regional metamorphism. They are the oldest members of the rock types of the thesis area.

The Charnockite Series are represented by basic members and enderbites. They carry in places xenoliths of older members which are comprised of Dharwars. Along the contacts with pink granite they display regressive changes.

Pink granites are the youngest rock types of the thesis area. They are comprised of adamellite, and granite and its variants. They display intrusive relation to the older rocks and contamination and desilication along the contacts with calcareous members.

After the consolidation of pink granite, the rock types were folded as major synforms and antiforms and were sheared in places. The sheared zones are traversed by pegmatite and quartz veins.