Table of Contents

Chapter 1: Introduction

1.1 Semiconductor thin film
1.2 Thin film deposition techniques
 1.2.1 Physical deposition
 1.2.2 Chemical deposition
 1.2.3 Chemical bath deposition
 1.2.4 SILAR method
1.3 Thin film doping
1.4 Thin film gas sensors
1.5 Surface conductivity changes in thin films
1.6 High energy electron beam irradiation

References

Chapter 2: Fabrication of SILAR Dip coater and gas sensing unit

2.1 Introduction
2.2 SILAR Method
2.3 Experimental procedure in SILAR
2.4 Fabrication of Dip-coating unit
2.5 Fabrication of annealing chamber
2.6 Fabrication of gas sensing unit
 2.6.1 LPG sensor
 2.6.2 Biogas sensor
 2.6.3 Ammonia sensor
2.7 Conclusions
Chapter 3: Optimizing film preparation and gas sensing conditions

3.1 Introduction 64
3.2 Variation of resistance with different doping elements 66
3.3.1 Elemental analysis by EDAX 71
3.4 Variation in band gap due to different annealing atmosphere 72
3.5 Optimum gas sensing conditions 75
3.5.1 Effect of repeated heating on resistance of the films 76
3.5.2 Effect of aging on sensitivity 78
3.6 Conclusions 78
References 80

Chapter 4: Ethanol sensing properties of Al, Sn and Cd doped ZnO and the effect of electron irradiation

4.1 Introduction 85
4.2 Materials and methods 87
4.3 Results and discussion 89
4.4 Conclusions 93

Chapter 5: LPG sensing properties of Al, Sn and Cd doped ZnO and the effect of electron irradiation

5.1 Introduction 99
5.2 Materials and methods 100
5.3 Results and discussions 102
5.4 Conclusions 107
Chapter 6: Biogas sensing properties of Al, Sn and Cd doped ZnO and the effect of electron irradiation

6.1 Introduction 111
6.2 Materials and methods 112
6.3 Results and discussions 114
6.4 Conclusions 117

Chapter 7: Summary and Conclusions

7.1 Introduction 120
7.2 Properties ZnO thin films used for the study 120
7.3 Optimum film preparation conditions 122
7.4 Effect of annealing temperature and annealing atmosphere 123
7.5 Effect of aging and repeated heating 123
7.6 Optimum gas sensing conditions 124
7.7 Effect of electron irradiation 127
7.8 Suggestions for future work 129