Dedicated to

My Parents, Husband and Daughter

Who mean the world to me and without their support this work would have been impossible!
Acknowledgement

It’s indeed my pleasure to thank the Vice Chancellor, Banasthali University, for allowing me to carry ahead with my exploration work. I am appreciative of Head of the Department of Physics as well as Head of the Department of Electronics, without their support the proposed research work would not have been possible. My sincere thank to my ever supporting guide, Dr. Parvez Ahmad Alvi whose timely guidance paved way every time I needed it.

I dedicate my thesis to my caring parents (Mr. Anjani Kumar Jha and Mrs. Bimla Jha) without whose vision, support, love and blessings, I may not have accomplished my research study! I owe it to my loving, caring and understanding husband Akhilesh Jha and wonderful daughter Khushi whose infectious smiles never left me alone even in the most testing phases of my research journey. Their unfailing hope in my capabilities kept me going. My gratefulness to my adorable sister Smriti and brother Baljeet who have supported me in all my endeavors and whose amiable and happy-go-lucky attitude helped me sail through my tough times My sincere gratitude to my parent-in-laws (Mr. M.N. Jha and Mrs. Shyama Jha) who bestowed faith in me. My appreciations to my brother-in-law Amit Jha and niece Saanvi in supporting me. My thankfulness to all my relatives and friends who directly or indirectly contributed towards my achievement.

I would like to show my acknowledgement to INUP (Indian Nano Users Program) organized by CeNSE (Center for Nano Science and Engineering) IISc Bangalore for providing me with valuable inputs on nanostructures and nanofabrication. My heartfelt thanks to Mr. Mahesh Sharma, Technical Assistant, Simulation Lab whose selfless support helped me march ahead. Contributions from my colleagues, Mr. Pyare Lal, Ms. Meha Sharma, Ms. Rashmi Yadav are praiseworthy.
Declaration

I do hereby affirm that the work presented is my unique work and has no resemblance to any other existing work in the relevant field. The research work has been ably supervised by Dr. P.A. Alvi, Associate Professor, Department of Physics, Banasthali University.

Swati Jha
Research Scholar
Department of Electronics
Banasthali University
Abstract

Semiconductor lasers, since their creation in 1960’s have assumed a very significant technological role. They have gained an important place in the class of lasers and are used in applications such as telephone and image transmission, television signal transmissions, computer interconnects and networks, bar code readers, laser printers and military applications. Recently they have gained usage in two dimensional display panels, rewritable optical data, storage of images, welding, and medical applications as well. Main reasons behind their popularity may be attributed to high optical output power, low threshold current, short optical pulse generation, high speed direct current modulation, narrow spectral line width, broad line width range, cheaper cost and miniscule electrical power consumption. These accomplishments can be ascribed to the combined progress in technologies related to growth of materials as well as theoretical understanding of a completely novel class of semiconductor lasers- the Quantum Well Lasers. There has been an extensive study of heterojunction structures leading to many Optoelectronic applications. Brief outline of the research work is presented below:

Chapter 1 deals with the introduction of heterojunctions and heterostructures. Energy band diagrams of semiconductors are studied when they are a standalone unit and when they are brought in contact with each other. Various types of heterojunctions are studied when they are classified based on the basis of conductivity, composition, band alignment and refractive index profile. Growth techniques of heterostructures and their applications have also been touched upon.

Chapter 2 is dedicated to the literature survey of the two nano heterostructures which we have explored for their lasing characteristics namely AlInGaAs/GaAs and AlGaAs/InP.

Chapter 3 talks about the theoretical aspects of quantum wells, calculation of energy levels in valence and conduction bands, quasi Fermi levels, concept of strain and lasing characteristics like material gain, mode gain, anti-guiding factor gain compression, refractive index change and differential gain,

Chapter 4 compares the bulk heterostructures with nano-heterostructures. Energy band structure of bulk materials is discussed and the compositional dependence of ‘Ga’ is evaluated for the ternary heterostructures AlGaAs/GaAs and InGaAs/InP along with quaternary heterostructure InGaAlAs on GaAs and InP substrates.
Chapter 5 explores the lasing characteristics of step index SCH (separate confinement heterostructure) quaternary semiconducting heterostructure comprising of solitary quantum well of $\text{Al}_{0.15}\text{In}_{0.22}\text{Ga}_{0.63}\text{As}$ with a barrier of $\text{Al}_{0.2}\text{Ga}_{0.8}\text{As}$ and a cladding of $\text{Al}_{0.61}\text{Ga}_{0.39}\text{As}$ on GaAs substrate. In the subsequent part of this chapter yet another ternary semiconductor based lasing heterostructure comprising of single quantum well of $\text{In}_{0.45}\text{Ga}_{0.55}\text{As}$ with a barrier of $\text{Al}_{0.29}\text{Ga}_{0.17}\text{In}_{0.54}\text{As}$ and a cladding of $\text{Ga}_{0.48}\text{In}_{0.52}\text{As}$ grown on InP is surveyed. Apart from the lasing features like optical gain, modal gain, anti guiding factor, the energy band structure along with valence band (VB) and conduction band (CB) envelope functions and band offsets has been studied. Using theoretical simulation, the behaviour of quasi-Fermi levels in both the CB and VB have been determined. These properties have been studied in both the polarization modes namely Transverse Electric (TE) and Transverse Magnetic (TM) modes and their comparisions have been made.

Chapter 6 investigates the SQW quaternary semiconducting InGaAlAs/GaAs heterostructure and the ternary lasing heterostructure AlGaAs/InP based on GRIN SCH profile. The dependence of material gain on application of strain, well width alterations and temperature variations has been probed.

Chapter 7 examines the MQW heterostructure based on STIN-SCH profile of InGaAlAs/GaAs and AlGaAs/InP. The comparative study of the two heterostructures has also been drawn to scrutinize their usage in various optoelectronic applications.

Chapter 8 probes the MQW InGaAlAs/GaAs and AlGaAs/InP heterostructure based on graded index -SCH profile and its lasing properties. Effect of number of quantum wells and GRIN steps has been evaluated on material gain.

Chapter 9 is dedicated to the discussion, summary and conclusion of the two heterostructures.
CHAPTER 5 SQW HETEROSTRUCTURE BASED ON STIN-SCH PROFILE………..63

5.1 Brief overview of AlInGaAs/GaAs based STIN-SCH SQW Heterostructure………..63
 5.1.1 Envelope Functions and Fermi levels………………………………………………63
 5.1.2 Material Gain ……………………………………………………………………………65
 5.1.3 Mode Gain……………………………………………………………………………….66
 5.1.4 Threshold Current Density …………………………………………………………….67
 5.1.5 Gain Compression and Differential Gain …………………………………………..69
 5.1.6 Anti-guiding Factor and Refractive Index Change ………………………………..70
 5.1.7 Effect of Strain ………………………………………………………………………...70
 5.1.8 Quantum Well Width Alteration Effects ………………………………………….71
 5.1.9 Effect of Temperature ………………………………………………………………..72

5.2 Brief overview of InGaAs/InP based STIN-SCH SQW Heterostructure………..73
 5.2.1 Envelope Functions and Fermi levels …………………………………………………74
 5.2.2 Material Gain ……………………………………………………………………………75
 5.2.3 Mode Gain……………………………………………………………………………….76
 5.2.4 Peak Material Gain ……………………………………………………………………77
 5.2.5 Effect of Strain …………………………………………………………………………78
 5.2.6 Quantum Well Width Alteration Effects …………………………………………..78
 5.2.7 Effect of Temperature ………………………………………………………………..80

References

CHAPTER 6 SQW HETEROSTRUCTURE BASED ON GRIN-SCH PROFILE………..84

6.1 Brief overview of AlInGaAs/GaAs based GRIN-SCH SQW Heterostructure………..84
 6.1.1 Envelope Functions ……………………………………………………………………85
CHAPTER 8 MQW HETEROSTRUCTURE BASED ON GRIN-SCH PROFILE

8.1 Brief overview of AlInGaAs/GaAs based GRIN-SCH MQW Heterostructure

8.1.1 Envelope Functions

8.1.2 Material Gain

8.1.3 Peak Material Gain and Mode Gain

8.1.4 Effect of Strain

8.1.5 Quantum Well Width Alteration Effects

8.1.6 Effect of Temperature

8.1.7 Effect of Number of Quantum Wells

8.2 Brief overview of InGaAs/InP based STIN-SCH MQW Heterostructure

8.2.1 Material Gain

8.2.2 Effect of Strain

8.2.3 Quantum Well Width Alteration Effects

8.2.4 Effect of Temperature

References

CHAPTER 9 SUMMARY AND CONCLUSION

9.1 STIN Profile for SQW and MQW for AlInGaAs/GaAs and InGaAs/InP

9.2 GRIN Profile for SQW and MQW for AlInGaAs/GaAs and InGaAs/InP

9.3 Key Observations

9.4 Comparative study of InGaAlAs/InP with AlInGaAs/GaAs

9.4.1 Structure Parameter Details

9.4.2 Discussion

9.5 Future Scope

Appendix A List of Figures

Appendix B List of Tables

Appendix C List of Publications