Contents

Chapter 1 Dihydroxylation of Olefinic Compounds — A Concise Review................. 1

1.1 Introduction... 1

1.2 Hydroxylation using Potassium permanganate.. 3

1.3 Hydroxylation using Osmium tetroxide ... 8
 1.3.1 Non catalytic cis- Hydroxylation of Olefins... 8
 1.3.2 Catalytic Cis Hydroxylation of Olefins .. 15

1.4 Hydroxylation using Organic peroxy acids ... 20

1.5 Hydroxylation using Hydrogen Peroxide... 21

1.6 Hydroxylation using Halogens and Silver Carboxylates 23
 1.6.1 Reactions of halogens with silver salts of carboxylic acids 23
 1.6.1.1 Hunsdiecker Reaction.. 25
 1.6.1.2 Simonini Reaction ... 26
 1.6.2 Dihydroxylation using halogen and silver carboxylate 28
 1.6.2.1 Woodward cis-hydroxylation ... 30
 1.6.2.2 Prevost Reaction ... 32
 1.6.3 Cis-hydroxylation of olefinic compounds using silver succinate and iodine... 35
 1.6.4 Cis-hydroxylation of olefins using silver phthalate and iodine 39

1.7 Hydroxylations using metal carboxylates other than silver carboxylates 42
 1.7.1 Cis- Hydroxylation of olefins using iodine, potassium iodate and potassium acetate.. 42
 1.7.2 Dihydroxylation with Thallium Acetate and Iodine 43
 1.7.3 Cobalt (II) Acetate- Catalyzed Woodward- Prevost Reaction 44
 1.7.4 Hydroxylation using Lead Acetate and Iodine ... 45

1.8 Ruthenium-Catalyzed Dihydroxylation of olefins... 45

1.9 NaIO₄/ Li Br- mediated Dihydroxylation of olefins... 46
Chapter 2 Asymmetric synthesis of Diols – An Overview

2.1 Introduction.

2.2 Asymmetric Synthesis.

2.3 Asymmetric dihydroxylation of olefins

2.3.1 Catalytic Asymmetric Dihydroxylation

2.3.2 Immobilization of Osmium Catalysts for Asymmetric Dihydroxylation of Olefins

2.3.3 Osmium-catalyzed asymmetric dihydroxylation using sodium chlorite

Chapter 3 Asymmetric Dihydroxylation of Olefins Using L-(+)-Silver Dimethoxy Succinate and Iodine

3.1 Introduction.

3.2 Aims and Objectives.

3.3 Results and discussion

3.3.1 Preparation of L-(+)-silver dimethoxy succinate

3.3.2 Asymmetric dihydroxylation of octadec-cis-9-enoic acid (oleic acid) using L-(+)-silver dimethoxy succinate and iodine

3.3.3 Asymmetric dihydroxylation of octadec-trans-9-enoic acid (elaidic acid) using L-(+)-silver dimethoxy succinate and iodine

3.3.4 Asymmetric dihydroxylation of octadec-cis-6-enoic acid (petroselenic acid)

3.3.5 Summary

3.4 Conclusion

3.5 Experimental

3.5.1 General Procedures

3.5.2 Synthesis of L-(+)-silver dimethoxy succinate

3.5.2.1 Preparation of diethyl dimethoxy succinate

3.5.2.2 Preparation of L-(+)-dimethoxy succinic acid

3.5.2.3 Preparation of L-(+)-silver dimethoxy succinate
Chapter 4 Dihydroxylation of Olefins Using Lead Acetate and Iodine

4.1 Introduction ... 83
4.2 Aims and Objectives ... 84
4.3 Results and Discussion ... 85
 4.3.1 Dihydroxylation of ethyl oleate (ethyl octadec-cis-9-enoate) using lead acetate and iodine .. 85
 4.3.2 Dihydroxylation of elaidic acid (octadec-trans-9-enoic acid) .. 87
 4.3.3 Dihydroxylation of petroselenic acid (octadec-cis-6-enoic acid) .. 88
 4.3.4 Dihydroxylation of erucic acid (ethyl docos-cis-13-enoate) ... 89
 4.3.5 Dihydroxylation of cyclohexene .. 89
 4.3.6 Dihydroxylation of diethyl fumarate .. 90
 4.3.7 Attempted dihydroxylation of 2-methyl 2-butene ... 90
 4.3.8 Summary .. 91
4.4 Conclusions .. 91
4.5 Experimental procedures ... 92
 4.5.1 Dihydroxylation of ethyl oleate ... 92
 4.5.2 Dihydroxylation of elaidic acid ... 93
 4.5.3 Dihydroxylation of petroselenic acid ... 94
 4.5.4 Dihydroxylation of erucic acid .. 94
 4.5.5 Dihydroxylation of cyclohexene ... 95
 4.5.6 Dihydroxylation of diethyl fumarate ... 95
 4.5.7 Attempted dihydroxylation of 2-methyl 2-butene ... 96
Chapter 5 Analytical Investigations on the Nature of the Intermediate in the Dihydroxylation of Olefinic Compounds Using Lead Acetate and Iodine

5.1. Introduction

5.2 Aims and objectives

5.3 Results and Discussion

5.3.1. Nature of the intermediate of dihydroxylation of ethyl oleate using lead acetate and iodine

5.3.2 Effect of moisture on reactions of olefins with lead acetate and iodine in acetic acid medium

5.3.3 Proposed mechanism of syn-hydroxylation of olefins by lead acetate and iodine

5.4 Conclusions

5.5 Experimental

5.5.1 Preparation of the intermediate of lead acetate-iodine dihydroxylation of ethyl oleate

5.5.2 TLC of the crude intermediate from lead acetate - iodine dihydroxylation of ethyl oleate

5.5.3 Purification of the intermediate from lead acetate-iodine dihydroxylation of ethyl oleate by column chromatography

5.5.4 Synthesis of ethyl erythro-9, 10-diacetoxy stearate

Chapter 6 Summary of the Thesis

References