**LIST OF TABLES**

**Table 1.1**  Sensing parameters of different metal oxides based towards different reducing gases [Yaacob (2012)].

**Table 1.2**  Physical properties of tungsten trioxide at room temperature.

**Table 1.3**  Chemical properties of tungsten trioxide.

**Table 1.4**  Structural transformation of WO$_3$ with temperature [Ashan (2012)].

**Table 1.5**  Physical properties of molybdenum trioxide.

**Table 1.6**  Chemical properties of molybdenum trioxide.

**Table 1.7**  Different Structure and phases of MoO$_3$[Koike *et al.* (2014)].

**Table 3.1**  Preparation conditions of WO$_3$ films.

**Table 3.2**  Details of samples before and after annealing treatment.

**Table 3.3**  Composition analysis of amorphous and annealed films measured by EDS.

**Table 3.4**  Thickness, optical and electrical properties of as-deposited (amorphous) and annealed (crystalline) films of tungsten trioxide on silicon and silica substrates.

**Table 3.5**  Raman peak position & assignments in WO$_3$.

**Table 3.6**  H$_2$S response (S) of annealed film (W1-Alumina-673) with variation in concentration and operating temperature. The response and recovery time are in seconds.

**Table 3.7**  C$_2$H$_5$OH response (S) of W1-Alumina-673 as a function of concentration and operating temperature. The response and recovery time are in seconds.

**Table 4.1**  Raman peak positions in WO$_3$ nanoparticles, commercial powder and thin films samples.
Table 4.2  H₂S sensor signal (S) at different gas concentration and operating temperature. Response and recovery time is in seconds.

Table 4.3  Sensor signal (S) towards C₂H₅OH as a function of operating temperature and concentration. Response and recovery time is in seconds.

Table 5.1  Deposition conditions of amorphous thin films of MoO₃.

Table 5.2  Details of sample codes before and after annealing.

Table 5.3  Thin film properties as measured by optical and electrical studies.

Table 5.4  Raman shifts of the annealed MoO₃ thin film samples and powder along with their vibrational groups.

Table 5.5  Raman peak positions, intensity ratios $\frac{I_{291}}{I_{291}}$ and $\frac{I_{130}}{I_{130}}$; and the integral intensity of the peak at 820 cm⁻¹ (I₈₂₀) in amorphous and crystalline films and commercial powder samples of MoO₃. Stoichiometry of samples was determined from the intensity ratio $\frac{I_{291}}{I_{291}}$. Crystallite size is also given for the powder sample. Maximum uncertainty in Raman peak positions is ±1 cm⁻¹.

Table 5.6  Sensor response (S) of the sample: M-Alumina1-623 towards H₂S gas with varying operating temperature and concentration. The response and recovery times are in seconds.

Table 5.7  Sensor response (S) of the sample: M-Alumina1-623 towards C₂H₅OH gas with varying operating temperature and concentration. The response and recovery time is in seconds.

Table 6.1  Raman peak intensity ratios $\frac{I_{285}}{I_{285}}$ and $\frac{I_{117}}{I_{117}}$; and the integral intensity of the peak at 820 cm⁻¹ of nanoparticles. The Raman peak intensity of amorphous, crystalline films and commercial powder samples of MoO₃ are provided for comparison. Stoichiometry of samples was determined from the intensity ratio: $\frac{I_{285}}{I_{285}}$. Crystallite size is given for the two powder samples.
Table 6.2  Sensor signal (S) of nanoparticles towards H$_2$S gas as a function of operating temperature and concentration. The response and recovery time is in seconds.

Table 6.3  Sensor response (S) of nanoparticles towards C$_2$H$_5$OH gas with varying operating temperature and concentration. The response and recovery time is in seconds.