CONTENTS

CHAPTER 1 INTRODUCTION

1.1 Ion exchange
1.2 The process of ion exchange
1.3 Characteristic features of ion exchangers
 1.3.1 Ion exchange capacity
 1.3.2 Selectivity
 1.3.3 Ion exchange equilibrium
 1.3.4 Binary exchange
1.4 Ion exchange chromatography
 1.4.1 Frontal chromatography
 1.4.2 Elution chromatography
 1.4.3 Displacement chromatography
1.5 Theories of ion exchange
 1.5.1 The double layer theory
 1.5.2 Crystal lattice exchange theory
 1.5.3 Donnan membrane theory
1.6 Sorption characteristics of ion exchangers
1.7 Kinetics and thermodynamics of adsorption
1.8 Types of ion exchangers
 1.8.1 Natural ion exchangers
 1.8.2 Synthetic ion exchangers
 i) Synthetic organic ion exchangers
 ii) Synthetic inorganic ion exchangers
 iii) Inorganic-organic hybrid ion exchangers
 1.8.3 Miscellaneous type ion exchangers
1.9 Literature review
 1.9.1 Synthetic inorganic cation exchangers
 1.9.2 Kinetics, thermodynamics and sorption studies of ion exchangers
 1.9.3 Catalytic and antimicrobial activities of ion exchangers
 1.9.4 Industrial applications of inorganic cation exchangers
CHAPTER 2 SYNTHESIS AND CHARACTERIZATION
OF BIMETALLIC INORGANIC CATION EXCHANGERS
BASED ON TETRAVALENT METAL ACID SALTS

2.1 Experimental

2.1.1 Reagents and chemicals
2.1.2 Apparatus
2.1.3 Synthesis of ion exchangers
2.1.4 Physicochemical characterizations
 i) Ion exchange capacity
 ii) Chemical composition
 iii) Chemical resistivity
 iv) Effect of hydrated ionic radii and temperature on IEC
 v) pH titration curves
 vi) Distribution coefficient (K_d)
 vii) Binary separations
2.1.5 Structural characterizations
 i) Fourier Transform Infrared (FTIR) Spectroscopy
 ii) X-ray Diffraction (XRD)
 iii) Thermal analysis
 iv) Scanning Electron Microscopy (SEM) and Energy
 Dispersive X-ray Spectroscopy (EDS)
 v) UV-Visible Diffuse Reflectance Spectroscopy
 (UV-Vis DRS)

2.2 Results and discussions

2.2.1 Titanium tin molybdate (TiSnMo)
2.2.2 Titanium tin tungstate (TiSnW)
2.2.3 Titanium tin selenate (TiSnSe)
2.2.4 Titanium cerium selenate (TiCeSe)
2.2.5 Zirconium bismuth iodate (ZrBiI)
2.2.6 Zirconium bismuth molybdate (ZrBiMo)
2.2.7 Zirconium cerium tungstate (ZrCeW)
2.2.8 Zirconium tin molybdate (ZrSnMo)
CHAPTER 3 INORGANIC-ORGANIC CATION EXCHANGERS
BASED ON TETRAVALENT BIMETALLIC ACID SALTS

3.1 Experimental 89
 3.1.1 Reagents and chemicals 89
 3.1.2 Apparatus 90
 3.1.3 Synthesis of ion exchangers 90
 3.1.4 Physicochemical characterizations 91
 3.1.5 Structural characterizations 92

3.2 Results and discussions 92
 3.2.1 Poly-o-toluidine-zirconium bismuth tungstate (POT-ZrBiW) 92
 3.2.2 Poly-o-toluidine-zirconium cerium molybdate (POT-ZrCeMo) 101
 3.2.3 Polyaniline-titanium cerium molybdate (PANI-TiCeMo) 111
 3.2.4 Polyaniline-titanium cerium tungstate (PANI-TiCeW) 119

CHAPTER 4 KINETICS, THERMODYNAMICS AND SORPTION STUDIES OF METAL IONS ON BIMETALLIC INORGANIC CATION EXCHANGER

4.1 Experimental 130

4.2 Results and discussions 132

4.3 Separation and removal of Pb^{2+} and Cu^{2+} ions from textile Industry effluents 144

4.4 Determination of Co^{2+} in pharmaceutical samples 145

4.5 Removal of Ni^{2+} from storage battery effluents 146

CHAPTER 5 CATALYTIC ACTIVITIES OF SYNTHESIZED BIMETALLIC CATION EXCHANGERS BASED ON CERIUM

5.1 Catalytic activity of TiCeMo and PANI-TiCeMo towards dye degradation 147
 5.1.1 Experimental 149
 5.1.2 Results and discussions 150

5.2 Application of TiCeW and ZrCeW as solid acid catalysts for the esterification of iso-amyl alcohol with acetic acid 156
 5.2.1 Experimental 157
 5.2.2 Results and discussions 158
CHAPTER 6 ANALYTICAL APPLICATIONS OF SYNTHESIZED BIMETALLIC CATION EXCHANGERS

6.1 Antibacterial activities of poly-o-toluidine based composite exchangers
 6.1.1 Experimental
 i) Antimicrobial activity
 ii) Antifungal activity
 6.1.2 Results and discussions

6.2 Industrial wastewater treatment using synthesized bimetallic exchangers

6.3 Extractive determination of lead in ayurvedic medicines and paint
 6.3.1 Separation of lead from ayurvedic samples
 6.3.2 Separation and determination of lead in paint

6.4 Separation of Ca$^{2+}$ and Mg$^{2+}$ from dolomite samples

CHAPTER 7 CONCLUSION AND SCOPE

REFERENCES