Contents

List of Figures xii-xv
List of Tables xvi
Abbreviations xvii

1. **Introduction** 1-30
 1.1 Bioluminescence— the nature of luminescence 1
 1.1.1 Quantum yield 6
 1.2 Objective of the thesis 7
 1.3 Firefly bioluminescence 8
 1.3.1 Firefly anatomy 9
 1.3.2 Firefly light production 11
 1.3.3 Firefly flash control mechanism 13
 1.4 Review of literature 15
 1.4.1 Steady-state observations 15
 1.4.2 Time-resolved observations 16
 1.4.3 External factors on firefly bioluminescence 17
 1.5 Applications of firefly bioluminescence 19

2. **Theory and Instrumentations of the Methods used** 31-49
 2.1 Introduction 31
 2.2 Steady-state and Time-resolved measurements 32
 2.3 Emission spectroscopy 34
 2.3.1 Spectrometer and spectrograph 35
 2.3.2 Photomultiplier tube 38
 2.4 Interference 41
 2.4.1 Young’s double hole experiment 42
 2.4.2 Michelson interferometer experiment 44
 2.4.3 Diffraction grating 46
3. Emission Spectra of the Continuous Light of Fireflies 50-71

3.1 Introduction 50

3.2 Materials and methods 51
 3.2.1 Continuous glows from firefly 51
 3.2.2 Recording spectra in spectrometer 52
 3.2.3 Recording spectra in spectrograph 53

3.3 Results and discussion 53
 3.3.1 Emission spectra generated in the spectrometer 53
 3.3.2 Emission spectra generated in the spectrograph 57
 3.3.3 Identification of the sharp line 61
 3.3.4 Model 63

3.4 Conclusions 64

4. Coherence Measurements of the Light of the Firefly 72-97

4.1 Introduction 72

4.2 Materials and methods 74
 4.2.1 Recording diffraction pattern 74
 4.2.2 Recording interference patterns 75
 4.2.2.1 In Michelson interferometer 75
 4.2.2.2 In Young two pin hole 77

4.3 Results and discussion 78
 4.3.1 Diffraction pattern 78
 4.3.2 Interference patterns 81
 4.3.2.1 Temporal coherence 81
 4.3.2.2 Spatial coherence 87
 4.3.2.3 Validation works 89

4.4 Conclusions 94

5. Firefly flashes at Temperatures 20 °C — 40 °C 98-115

5.1 Introduction 98
List of figures

Chapter 1

1.1 Position of bioluminescence in the frame of light-matter interaction 4
1.2 Jablonński diagram for (a) bioluminescence (b) photoluminescence 5
1.3 (a) An adult male specimen of the Indian species of firefly
 Luciola praeusta (b) Ventral side of the firefly
 10
1.4 Luciferase catalysed firefly bioluminescence reaction 11
1.5 NO control model for firefly flashing 14

Chapter 2

2.1 Experimental set up of HR2000 spectrometer 37
2.2 Schematic diagram of a simple prism spectrograph 37
2.3 The Hilger & Watts glass spectrograph 38
2.4 The experimental set-up for recording time-resolved measurements 40
2.5 Young two pin hole experiment 43
2.6 The Michelson interferometer 45

Chapter 3

3.1 (a) Emission spectrum of the first specimen of the firefly *Luciola praeusta* (b) Zero-signal spectrum (c) The firefly emission spectrum after subtracting the zero-signal spectrum 55
3.2 (a) Emission spectrum of the second specimen of the firefly (b) The spectrum in the absence of a signal (c) Spectrum after subtracting zero-signal spectrum 56
3.3 Closer view of the 591 nm line 57
3.4 Emission spectrum of the first specimen of the firefly *Luciola praeusta* on a colour film (b) Intensity profile 58
3.5 (a) Coloured emission spectrum of the second specimen of the firefly yellow (b) Intensity distribution
3.6 (a) and (b) Emission spectra and corresponding intensity distribution of the third and fourth specimen of the firefly *L. praeusta*
3.7 (a) and (c) Iron emission line spectra (b) Firefly emission spectrum
3.8 Ventral and dorsal view of a luminescent light organ of *Luciola cerata*
3.9 An end organ and its environs of an adult *Photuris* lantern
3.10 SEM image of uric acid granules in the lantern of the firefly *L. praeusta*

Chapter 4

4.1 Experimental set up for recording diffraction pattern
4.2 Experimental set up of the Michelson interferometer
4.3 Experimental arrangement of the Young two pin hole experiment
4.4 (a) Diffraction pattern of the light of the firefly (b) Intensity distribution
4.5 (a) Interference pattern of the light of the firefly *Luciola praeusta* in Michelson interferometer at zero optical path difference (b) Oscillating intensity plot
4.6 (a) Interference pattern for a path difference of 2 cm and intensity plot (b) Interference pattern for a path difference of 4 cm and corresponding intensity distribution
4.7 Interference patterns alongwith intensity plots (a) for a path difference of 6 cm (b) for a path difference 8 cm
4.8 (a) Interference patterns for a path difference of 10 cm and intensity profile (b) Interference pattern for a for a path difference of 11.5 cm and intensity plot
4.9 Interference patterns of the light of the firefly recorded in the Young two pin hole experiment for a constant hole diameter of 160 µm (a) for a hole separation of 160 µm (b) for a hole separation of 170 µm (c) for a hole separation of 180 µm (d) a close view of the central fringe pattern recorded from 15 cm distance
4.10 Interference patterns obtained in the Michelson interferometer for a commercial 632.8 nm He-Ne laser (a) for zero path difference of the two mirrors (b) for a path difference of 4.6 cm (c) for a path difference of 9.5 cm

4.11 Interference patterns obtained with a 405 nm diode laser (Pegasus Shanghai) for the difference in the Michelson interferometer arm of (a) zero (b) 160 and (c) 280 µm

4.12 Interference fringes of sodium light recorded in the Michelson interferometer for arm differences of (a) zero (b) 3.2 mm

4.13 Interference fringes in the Young double hole set up for a He-Ne laser for hole separations of (a) 160 µm (b) 180 µm

4.14 Interference fringes obtained in the Young double hole experiment for a 405 nm diode laser for hole separations of (a) 160 (b) 180, and (c) 240 µm

4.15 Sodium light source in the Young two pin hole experiment for hole separation of 160 µm

Chapter 5

5.1 Experimental set up for recording time-resolved pulses of the firefly

5.2 (a) Flashes from a specimen at 20 °C (forward direction)
(b) at 20 °C (reverse direction)

5.3 (a) Flashes from the same specimen at 25 °C (forward direction)
(b) at 25 °C (reverse direction)

5.4 (a) Typical flashes of firefly *Luciola praeusta* at 30 °C (forward direction) (b) at 30 °C (reverse direction)

5.5 (a) Typical flashes of the firefly at 35 °C (forward direction) (b) at 35 °C (reverse direction)

5.6 (a) Typical flashes of the same specimen at 40 °C (forward direction) (b) at 40 °C (reverse direction)

5.7 Variation of pulse width with temperature (n = 25). The red line...
represents the regression line, while the black with error bars is the experimentally obtained line.

5.8 Photograph of the lantern of the flashing firefly *Luciola praeusta* at different temperatures of (a) 20 °C (b) 25 °C (c) 30 °C (d) 35 °C, and (e) 40 °C.

Chapter 6

6.1 Quick flashes emitted by a specimen of the firefly *Luciola praeusta* at 20 °C

6.2 Quick successive flashes emitted by another specimen at 20 °C

6.3 Flashes of the firefly *Luciola praeusta* at 18 °C

6.4 Flashes of the firefly at 16 °C

6.5 Flashes of the firefly at 14 °C

6.6 Typical *in vivo* flash at 12 °C

6.7 Typical single and clean flashes (a) at 18 °C (b) at 16 °C (c) at 14 °C
List of tables

Chapter 1
1.1 Various types of luminescence with their excitation modes 3

Chapter 5
5.1 Different flash durations of different specimens of the firefly 108
5.2 Average flash durations for \(n = 25 \), at different temperatures 110

Chapter 6
6.1 Flash durations of simple ‘clean’ flashes at three different temperatures 126