Chapter 4

z_J-ideals in lattices
Chapter 4

z_J-ideals in lattices

4.1 Introduction

The concept of z-ideals, which are both algebraic and topological objects, were first introduced by Kohls \cite{44} and played a fundamental role in studying the ideal theory of $C(X)$, the ring of continuous real-valued functions on a completely regular Hausdorff space X; see Gillman and M. Jerison \cite{21}. An ideal I of a commutative ring R is called a z-ideal if whenever any two elements of R are contained in the same set of maximal ideals and I contains one of them, then it also contains the other (see L. Gillman and M. Jerison \cite{21} for an equivalent definition). Mason \cite{50} studied z-ideals in general commutative rings. He proved that maximal ideals, minimal prime ideals and some other important ideals in commutative rings are z-ideals (see \cite{50}, p. 281). As a generalization of z-ideals, the concept of z^0-ideals is introduced and studied in $C(X)$. Note that in \cite{33}, Huijsmans and de Pagter studied z^0-ideals under the name of d-ideals in Riesz spaces. Speed \cite{63} introduced and studied the concept of Baer
ideals in a commutative Baer ring which are essentially \(z^0 \)-ideals (equivalently, \(d \)-ideals) and characterized regular rings and quasi-regular rings. Jayaram [35], Anderson, Jayaram and Phiri [6] defined this concept (Baer ideals) for lattices and multiplicative lattices respectively. Since \(z \)-ideal and \(z^0 \)-ideals (Baer ideals or \(d \)-ideals) are closely related in commutative rings, hence it is natural to study the analogues concept of \(z \)-ideals in lattices.

Hence, in this chapter, we introduce and study \(z \)-ideal and \(z_J \) ideal, a generalization of \(z \)-ideal, in bounded lattices and obtained some characterizations.

4.2 \(z \)-ideals

Let \(\mu \) as well as \(\text{Max}(L) \) denotes the set of all maximal ideals in a lattice \(L \) and let \(\mu(a) = \{ M \in \mu \mid a \in M \} \) for \(a \in L \).

For \(a \in L \), the intersection of all maximal ideals in \(L \) containing \(a \) is denoted by \(M_a \), that is, \(M_a = \bigcap \mu(a) \).

Through out this chapter, \(L \) denotes a lattice with 1.

Now, we define the concept of a \(z \)-ideal.

Definition 4.2.1. Let \(L \) be a lattice. An ideal \(I \) of \(L \) is a \textit{z-ideal} if

\[\mu(b) \subseteq \mu(a) \text{ and } b \in I \text{ implies } a \in I. \]

Lemma 4.2.2. Every maximal ideal is a \(z \)-ideal.

\textit{Proof.} Let \(M \) be a maximal ideal and \(\mu(a) \subseteq \mu(b), a \in M \). Since \(a \in M \) implies \(M \in \mu(a) \). But \(\mu(a) \subseteq \mu(b) \) gives \(M \in \mu(b) \). Thus \(b \in M \). Hence \(M \) is a \(z \)-ideal. \(\square \)

The following result gives which ideals are not \(z \)-ideals.
Lemma 4.2.3. Let M be a unique maximal ideal of a lattice L. Let I be an ideal of L such that $I \nsubseteq M$. Then I is not a z-ideal.

Proof. Since $I \nsubseteq M$, there exists $x \in M$ such that $x \notin I$. Let $i \in I$. Since M is the unique maximal ideal, we have $\mu(i) = \mu(x)$, but $x \notin I$. Thus I is not a z-ideal. □

The following result is well known.

Lemma 4.2.4. Every maximal ideal of a 1-distributive (hence distributive) lattice is a prime ideal.

Definition 4.2.5. Let L be a lattice with the smallest element 0. The lattice L is called semi-complemented if for any element $a \in L$ (with $a \neq 1$, if 1 exists) there exists a nonzero element $b \in L$ such that $a \land b = 0$. Dually, we can define a dual semi-complemented lattice.

First we characterize dual semi-complemented lattices in terms of maximal ideals.

Theorem 4.2.6. A lattice L with 0 is dual semi-complemented if and only if $\bigcap_{M \in \text{Max}(L)} M = \{0\}$.

Proof. Let L be a dual semi-complemented lattice. Suppose on the contrary that $\bigcap_{M \in \text{Max}(L)} M \neq \{0\}$. Let $a \in \bigcap_{M \in \text{Max}(L)} M$ and $a \neq 0$. Since L is dual semi-complemented, there exists $b \neq 1$ such that $a \lor b = 1$. This implies that $b \notin \bigcap_{M \in \text{Max}(L)} M$. Since $b \neq 1$, there exists a maximal ideal say M_1 such that $b \in M_1$. Since $a \in \bigcap_{M \in \text{Max}(L)} M$ implies $a \in M_1$. Thus $1 = a \lor b \in M_1$, a contradiction. Hence $\bigcap_{M \in \text{Max}(L)} M = \{0\}$.
Conversely, suppose that \(\bigcap_{M \in \text{Max}(L)} M = \{0\} \). Let \(0 \neq a \in L \). Since \(a \neq 0 \) implies \(a \notin \bigcap_{M \in \text{Max}(L)} M = \{0\} \). Then there exists a maximal ideal \(M_1 \) such that \(a \notin M_1 \). Therefore \((a] \lor M_1 = L \) implies \(1 \in (a] \lor M_1 \). Hence \(1 = a \lor b \) for some \(b \in M_1 \). Clearly, \(b \neq 1 \). Thus \(L \) is dual semi-complemented.

Lemma 4.2.7. Let \(L \) be a dual semi-complemented lattice. Then \((0] \) is a \(z \)-ideal.

Proof. Let \(\mu(a) \subseteq \mu(b) \) and \(a \in I = (0] \). Then \(a = 0 \) and \(\mu(a) = \mu(0) = \text{Max}(L) \). So \(\mu(b) = \text{Max}(L) \) implies \(b \in \bigcap_{M \in \text{Max}(L)} M = \{0\} \), by Theorem 4.2.6. Thus \(b = 0 \) implies. Hence \((0] \) is a \(z \)-ideal. \(\square \)

Remark 4.2.8. Note that in non dual semi-complemented lattice \(L \) the ideal \((0] \) is not a \(z \)-ideal, see the lattices \(L \) depicted in Figure 4.2.1.

![Figure 4.2.1: A non dual semi-complemented lattice](image)

Lemma 4.2.9. Let \(L \) be a 1-distributive lattice and \(a, b \in L \). Then the following statements hold.

1. \(M_{a \land b} = M_a \cap M_b \).
2. If $\mu(b) \subseteq \mu(a)$ then $\mu(b \land c) \subseteq \mu(a \land c)$ for any $c \in L$.

Proof. 1) Let $x \in M_{a \land b}$ and $x \notin M_a \cap M_b$. Without loss of generality, assume that $x \notin M_1$ for a maximal ideal M_1 containing a. But then $x \in M_{a \land b} \subseteq M_1$, a contradiction. Hence $M_{a \land b} \subseteq M_a \cap M_b$. Now, let $x \in M_a \cap M_b$ and $x \notin M_{a \land b}$. Then there is a maximal ideal, say M_2 such that $a \land b \in M_2$ but $x \notin M_2$. Since L is 1-distributive, by Lemma 4.2.4 M_2 is prime. This gives that $a \in M_2$ or $b \in M_2$. Without loss of generality, assume that $a \in M_2$. But then $x \in M_a \subseteq M_2$, a contradiction. Hence $M_a \cap M_b \subseteq M_{a \land b}$. Thus $M_{a \land b} = M_a \cap M_b$.

2) Let M be a maximal ideal containing $b \land c$, i.e., $M \in \mu(b \land c)$. By Lemma 4.2.4 M is a prime ideal. Therefore $b \in M$ or $c \in M$. If $c \in M$, $a \land c \in M$, and we are through. Now, let $b \in M$. Then $M \in \mu(b) \subseteq \mu(a)$, we have $a \in M$. This gives $a \land c \in M$. Thus $M = \mu(a \land c)$.

Remark 4.2.10. Note that the assertion of Lemma 4.2.9 need not be true, if we drop 1-distributivity. Consider the lattice L depicted in Figure 4.2.2. Clearly, L is not 1-distributive. In this lattice, $M_a = (d] = M_b$. Hence $M_a \cap M_b = (d]$ and $M_{a \land b} = (0]$. Thus $M_{a \land b} \nsubseteq M_a \cap M_b$. Also $\mu(a) = \mu(d) = (d]$ but $\mu(a \land b) \neq \mu(d \land b)$.

![Figure 4.2.2: $M_{a \land b} \nsubseteq M_a \cap M_b$](image-url)
Lemma 4.2.11. Every ideal \(I \) is contained in the least \(z \)-ideal namely,
\[
I_z = \bigcap \{ J \supseteq I \mid J \text{ is a } z\text{-ideal} \}.
\]

Proof. Let \(\mu(b) \subseteq \mu(a) \), \(b \in I_z \). Let \(J_1 \) be an arbitrary \(z \)-ideal such that \(J_1 \supseteq I \). Since \(b \in J_1 \) and \(J_1 \) is a \(z \)-ideal with \(\mu(a) \supseteq \mu(b) \), we have \(a \in J_1 \). Thus \(a \in I_z \). Hence \(I_z \) is a \(z \)-ideal.

Now, let \(J \) be any \(z \)-ideal containing \(I \). We claim that \(I_z \subseteq J \). Let \(x \in I_z \). Then clearly, \(x \in J \). Thus \(I_z \subseteq J \).

Remark 4.2.12. Consider the lattice \(L \) depicted in Figure 4.2.3. Let \(I = (a) \) be an ideal of \(L \). Then \(I_z = (c) \supsetneq I \).

![Figure 4.2.3: Example of a lattice with \(I \subseteq I_z \)](image)

Lemma 4.2.13. Let \(L \) be a lattice and \(I \) and \(J \) be any two ideals of \(L \). Then the following statements hold.

1. If \(I \subseteq J \) then \(I_z \subseteq J_z \).

2. \((I_z)_z = I_z \).

Proof. (1) Let \(I \subseteq J \) and \(x \in I_z = \bigcap_{K \supseteq I} K \), where \(K \) is a \(z \)-ideal. If \(x \notin J_z \), then there exists a \(z \)-ideal \(Q_1 \) such that \(x \notin Q_1 \) and \(J \subseteq Q_1 \). This together with \(I \subseteq J \), we have \(I \subseteq Q_1 \). But \(x \in I_z \) and \(I \subseteq Q_1 \) for a \(z \)-ideal \(Q_1 \), we have \(x \in Q_1 \), a contradiction. Hence \(I_z \subseteq J_z \).
4.2 z-ideals

(2) Clearly, $I_z \subseteq (I_z)_z$. Now, let $x \in (I_z)_z = \bigcap_{Q \supseteq I_z} Q$, where Q is a z-ideal. But I_z is the least z-ideal containing I_z. Therefore $x \in I_z$. Hence $(I_z)_z = I_z$. □

Lemma 4.2.14. Let L be a lattice and $a, b \in L$. Then $a \in M_b$ if and only if $M_a \subseteq M_b$ if and only if $\mu(b) \subseteq \mu(a)$.

Proof. Let $M_a \subseteq M_b$. Since $a \in M_a$ implies that $a \in M_b$. Now, suppose that $a \in M_b = \bigcap_{b \in M \in \mu} M$, and $x \in M_a = \bigcap_{a \in M \in \mu} M$. Let M_1, be any maximal ideal with $b \in M_1$. Then $a \in M_1$, as $a \in M_b$. This gives $x \in M_1$. Hence $x \in M_b$. It is clear that $M_a \subseteq M_b$ if and only if $\mu(b) \subseteq \mu(a)$. □

In the following result, we characterize z-ideals in lattices.

Lemma 4.2.15. Let I be an ideal of a 1-distributive lattice L. Then the following statements are equivalent.

1. I is a z-ideal.

2. If $\mu(a) = \mu(b)$ and $b \in I$ implies $a \in I$.

3. $M_a \subseteq I$ for all $a \in I$.

4. If $M_b \subseteq M_a$ and $a \in I$ implies $b \in I$.

Proof. (1) \Rightarrow (2): Obvious.

(2) \Rightarrow (3): Let $x \in M_a$. Then by Lemma 4.2.14 $M_x \subseteq M_a$. Hence $M_x = M_x \cap M_a = M_{a \land x}$ by Lemma 4.2.9. This gives $\mu(x) = \mu(x \land a)$. If $a \in I$, then $a \land x \in I$. By (2), $x \in I$.

(3) \Rightarrow (4): Let $M_b \subseteq M_a$ and $a \in I$. Then $M_b \subseteq M_a \subseteq M_{a \land x}$ by (3). Hence $\mu(b) \subseteq \mu(a \land x)$. By definition, $\mu(a) = \mu(a \land x)$. Therefore $\mu(b) \subseteq \mu(a)$.

(4) \Rightarrow (1): Let I be an ideal such that $M_a \subseteq I$ for all $a \in I$. Then $\mu(a) = \mu(b) \Rightarrow b \in I$. If $a \in I$, then $a \land x \subseteq I$. Hence $\mu(x) = \mu(a \land x)$. Therefore $\mu(x) = \mu(a) = \mu(b)$. Thus $b \in I$.

(1) \Rightarrow (4): Let I be a z-ideal. Then $M_a \subseteq I$ for all $a \in I$. If $M_b \subseteq M_a$ and $a \in I$, then $b \in I$.
(3) ⇒ (4): Let \(a \in I \). Then by (3), \(M_a \subseteq I \). Now if \(M_b \subseteq M_a \), then \(b \in M_b \subseteq I \).

(4) ⇒ (1): Follows from Lemma 4.2.14.

Now, we prove a separation theorem for \(z \)-ideals.

Theorem 4.2.16. Let \(L \) be a distributive lattice. If \(I \cap F = \emptyset \) for a \(z \)-ideal \(I \) and for a filter \(F \) in \(L \), then there exists a prime \(z \)-ideal \(P \) containing \(I \) and disjoint from \(F \).

Proof. Consider \(\mathcal{F} = \{ J \mid J \text{ is a } z \text{-ideal containing } I \text{ and } J \cap F = \emptyset \} \).

Since \(I \in \mathcal{F} \), \(\mathcal{F} \neq \emptyset \). Let \(\mathcal{C} \) be a chain in \(\mathcal{F} \) and \(M = \bigcup_{J \in \mathcal{C}} J \). Clearly, \(M \) is an ideal. Now to show that \(M \) is a \(z \)-ideal, consider \(\mu(a) \subseteq \mu(b) \) and \(a \in M \). Then \(a \in J_i \) for some \(i \). But \(J_i \) is a \(z \)-ideal, therefore \(b \in J_i \). Hence \(b \in M \). Thus \(M \) is a \(z \)-ideal. By Zorn’s Lemma, there exists a maximal element \(P \) of \(\mathcal{F} \). Clearly, \(P \) is a \(z \)-ideal with \(P \cap F = \emptyset \).

We claim that \(P \) is a prime ideal. Let \(a \land b \in P \) and \(a, b \notin P \). Then \((P \lor (a]) \cap F \neq \emptyset \) and \((P \lor (b]) \cap F \neq \emptyset \). Let \(x \in (P \lor (a]) \cap F \) and \(y \in (P \lor (b]) \cap F \). Then \(x \leq p_1 \lor a \) and \(y \leq p_2 \lor b \) for some \(p_1, p_2 \in P \).

This gives \(x \leq p_3 \lor a \) and \(y \leq p_3 \lor b \), where \(p_3 = p_1 \lor p_2 \). Therefore \(x \land y \leq (p_3 \lor a) \land (p_3 \lor b) = p_3 \lor (a \land b) \in P \). Thus \(x \land y \in P \). Also \(x \land y \in F \) gives that \(P \cap F \neq \emptyset \), a contradiction. Hence \(P \) is a prime \(z \)-ideal.

It is known that behavior of ideals is influenced by a behavior of prime ideals. The following result is an example of such a behavior.

Theorem 4.2.17. Let \(L \) be a distributive lattice. Then every prime ideal is a \(z \)-ideal if and only if every ideal is a \(z \)-ideal.
Proof. Suppose every prime ideal is a z-ideal. Let I be any ideal and $\mu(b) \subseteq \mu(a)$, $b \in I$. Suppose $a \notin I$. By Theorem 4.2.16, there exists a prime ideal $P \supseteq I$ and $a \notin P$. Clearly, $b \in P$ and $\mu(b) \subseteq \mu(a)$ implies $a \in P$ (since P is a z-ideal), a contradiction. Thus $a \in I$ proving I is a z-ideal.

Theorem 4.2.18. Let L be a 1-distributive, SSC lattice such that $\bigcap_{M \in \text{Max}(L)} M = \{0\}$, then every principal ideal is a z-ideal.

Proof. Let $I = (x)$ be an ideal of an SSC lattice L. Let $\mu(b) \subseteq \mu(a)$ and $b \in I$. Now, $b \in I = (x)$ and suppose $a \notin I = (x)$. Then there exists $c \neq 0$ such that $c \leq a$ and $c \land x = 0$. This gives $b \land c = 0$. Thus $\text{Max}(L) = \mu(b \land c) \subseteq \mu(a \land c)$, by Lemma 4.2.9. Then $c = a \land c \in \bigcap_{M \in \text{Max}(L)} M = \{0\}$. Therefore $c = a \land c = 0$, a contradiction. Thus $a \in I$. Hence I is a z-ideal.

Lemma 4.2.19. In a 1-distributive, dual semi-complemented lattice L, $a^\perp = \bigcap\{M \in \text{Max}(L) | a \notin M\}$ for any $a \in L$.

Proof. Let $x \in a^\perp$. Then $a \land x = 0$. Let $M \in \text{Max}(L)$. Since L is 1-distributive, we have M is prime. If $a \notin M$ then $x \in M$. Thus $a^\perp \subseteq \bigcap\{M \in \text{Max}(L) | a \notin M\}$.

Conversely, suppose that $x \in \bigcap\{M \in \text{Max}(L) | a \notin M\}$ and $x \notin a^\perp$, i.e., $x \land a \neq 0$. Hence $x \land a \notin \bigcap_{M \in \text{Max}(L)} M = \{0\}$ by Theorem 4.2.6. Therefore there exists a maximal ideal M_1 such that $a \land x \notin M_1$. But then $a \notin M_1 \in \text{Max}(L)$ with $x \notin M_1$, a contradiction to $x \in \bigcap\{M \in \text{Max}(L) | a \notin M\}$. Thus $a^\perp = \bigcap\{M \in \text{Max}(L) | a \notin M\}$.
We recall the following definition.

Definition 4.2.20. For an ideal I and a prime ideal P of a lattice L, we define the set $I(P)$ as follows: $I(P) = \{ x \in L \mid x \land y \in I \text{ for some } y \in L \setminus P \}$. If $I = \{0\}$ then $I(P)$ is denoted by $O(P)$. If L is a 0-distributive lattice then $O(P)$ is an ideal. An ideal I of a lattice L with 0 is said to be **Baer ideal** if $a \in I$ implies $a^\perp \subseteq I$ and is said to be **closed ideal** if $I = I^\perp$. An ideal I of a lattice L with 0 is called a **0-ideal** if there exists a proper filter F such that $I = F^0$, where $F^0 = \{ x \in L \mid x \land y = 0 \text{ for some } y \in F \}$. An ideal I of a lattice L is called a **dense ideal** if $I^\perp = \{0\}$. An ideal I of a lattice L is called a **non-dense ideal** if $I^\perp \neq \{0\}$.

Theorem 4.2.21. Let L be a 1-distributive lattice with 0 such that $\bigcap_{M \in \text{Max}(L)} M = \{0\}$. If I is an ideal of L satisfying any one of the following conditions then I is a z-ideal.

1. if I is a non-dense prime ideal;
2. if I is a closed ideal;
3. if I is 0-ideal;
4. if $I = O(P)$ for any prime ideal P;
5. if $I = A^\perp$ for any subset A of L.

Proof. (1) Let I be the non-dense prime ideal and $\mu(b) \subseteq \mu(a)$, $b \in I$. Now, let $I^\perp \neq \{0\}$. Then there exists a nonzero $x \in I^\perp$ this implies that $x \land i = 0$ for all $i \in I$. In particular, $x \land b = 0$. Since $\mu(b) \subseteq \mu(a)$ by Lemma 4.2.9, we have $\text{Max}(L) = \mu(b \land x) \subseteq \mu(a \land x)$. Thus $a \land x \in M$
for all $M \in \text{Max}(L)$. Thus $a \land x = 0$, as $\bigcap_{M \in \text{Max}(L)} M = \{0\}$ which yields $a \land x \in I$. Since I is a prime ideal, $a \in I$ or $x \in I$. If $x \in I$ then $x \in I \cap I^\perp = \{0\}$, a contradiction. Thus $a \in I$. Hence I is a z-ideal.

(2) Let I is a closed ideal, i.e., $I = I^{\perp\perp}$ and $\mu(b) \subseteq \mu(a)$, $b \in I$. Now $b \in I = I^{\perp\perp}$ implies $b \land i = 0$ for all $i \in I^\perp$. Since $\mu(b) \subseteq \mu(a)$ implies $\mu(b \land i) \subseteq \mu(a \land i)$ for $i \in I^\perp$, by Lemma 4.2.9. Thus $\mu(a \land i) = \text{Max}(L)$. Hence $a \land i \in \bigcap_{M \in \text{Max}(L)} M = \{0\}$. Therefore $a \land i = 0$ for all $i \in I^\perp$ implies $a \in I^{\perp\perp} = I$. Hence I is a z-ideal.

(3) Let I is a 0-ideal. Then $I = F^0 = \{x \in L \mid x \land y = 0 \text{ for some } y \in F\}$ for some filter F of L. Let $\mu(b) \subseteq \mu(a)$ and $b \in I$. Since $b \in I = F^0$ implies $b \land y = 0$ for some $y \in F$. Now, $\mu(b) \subseteq \mu(a)$, by Lemma 4.2.9. $\text{Max}(L) = \mu(b \land y) \subseteq \mu(a \land y)$. Hence $a \land y \in M$ for all $M \in \text{Max}(L)$. Thus $a \land y \in \bigcap_{M \in \text{Max}(L)} M = \{0\}$. Hence $a \land y = 0$ for some $y \in F$. Thus $a \in F^0 = I$. Hence I is a z-ideal.

(4) Let $I = O(P) = \{x \in L \mid x \land y = 0 \text{ for some } y \notin P\}$ for a prime ideal P of L. Then $F = L \setminus P$ is a filter. This gives that $I = F^0$. The result follows from (3).

(5) Let $I = A^\perp = \{x \in L \mid x \land a = 0 \text{ for all } a \in A\}$ and $\mu(b) \subseteq \mu(a)$, $b \in I$. Now $b \in I = A^\perp$ implies $b \land c = 0$ for all $c \in A$. Since $\mu(b) \subseteq \mu(a)$ implies $\mu(b \land c) \subseteq \mu(a \land c)$, by Lemma 4.2.9. Using the similar techniques as that of (3), we get $a \land c = 0$ for all $c \in A$. Thus $a \in A^\perp = I$. Hence I is a z-ideal. \[\square\]

Remark 4.2.22. In view of Theorem 4.2.6 and Theorem 4.2.21, it is clear that in a dual semi-complemented lattice every closed ideal is a z-ideal. However the assertion is not true, if we drop the condition of
4.2 \(z \)-ideals

dual semi-complemented lattices. Consider a semi-complemented lattice \(L \) depicted in Figure 4.2.4. In this lattice, the ideals \((a]\) and \((b]\) are closed ideals but not \(z \)-ideals.

![Diagram of lattice L with elements 0, a, b, c, and 1 labeled]

Figure 4.2.4: \(z \)-ideal and closed ideal are distinct

As mentioned in the introduction, the concept of Baer ideals (equivalently \(z^0 \)-ideals) and \(z \)-ideals are related in commutative rings with unity. In the following remark, we show that in general lattices they are not related.

Remark 4.2.23. From the following two figures, it is clear that neither a \(z \)-ideal is a Baer nor a Baer ideal is a \(z \)-ideal. Consider the lattices \(L_1 \) and \(L_2 \) depicted in Figure 4.2.5 (a) and Figure 4.2.5 (b). In Figure 4.2.5 (a), the ideal \(I = (b] \) is a Baer ideal but not a \(z \)-ideal whereas in Figure 4.2.5 (b), the ideal \(J = (x] \) is a \(z \)-ideal but not a Baer ideal.
4.2 \(z \)-ideals

However in a 0-1-distributive lattice under the additional condition, i.e., \(\bigcap_{M \in \text{Max}(L)} M = \{0\} \), we prove that every Baer ideal is a \(z \)-ideal. For this purpose we need following two results.

Theorem 4.2.24 (Thakare and Pawar [67]). In a 0-distributive lattice \(L \) the pseudocomplement of any ideal \(I \) is the intersection of all minimal prime ideals not containing \(I \).

Let \(\text{Min}(L) \) denotes the set of all minimal prime ideals in \(L \).

Lemma 4.2.25. Let \(L \) be a 0-distributive lattice. Then for \(a \in L \), \(a^\perp\perp = \bigcap\{P \in \text{Min}(L) | a \in P\} \).

Proof. Put \(I = a^\perp \) then \(I^\perp = a^\perp\perp \). By Theorem 4.2.24, \(I^\perp = a^\perp\perp = \bigcap\{P \in \text{Min}(L) | a^\perp \notin P\} \). By Theorem 3.2.16 we have, \(a^\perp\perp = \bigcap\{P \in \text{Min}(L) | a^\perp \notin P\} = \bigcap\{P \in \text{Min}(L) | a \in P\} \).

Lemma 4.2.26. Let \(L \) be a 0-1-distributive lattice such that \(\bigcap_{M \in \text{Max}(L)} M = \{0\} \). Then every Baer ideal is a \(z \)-ideal.
Proof. By Lemma 4.2.25, $a^\perp\perp = \bigcap\{P \in Min(L) | a \in P\} = P_a$ (say). Now, I is a Baer and $a \in I$ implies $a^\perp\perp = P_a \subseteq I$. Suppose $\mu(a) = \mu(b)$, $a \in I$ and $b \notin I$. Then $b \notin P_a$. Hence there exists a minimal prime ideal, say Q, such that $b \notin Q$. Moreover, $a \in Q$ implies $a^\perp \notin Q$. Then $(b \cap a^\perp \neq \{0\} = \bigcap_{M \in \text{Max}(L)} M$. Then there exists a maximal ideal M such that $(b \cap a^\perp \notin M$. Clearly, $a^\perp \notin M$. By 1-distributivity, M is a prime ideal. Since $(a \cap a^\perp = \{0\} \subseteq M$ and $a^\perp \notin M$, we have $a \in M$. Thus there exists a maximal ideal M such that $a \in M$ and $b \notin M$. Hence $\mu(a) \neq \mu(b)$, a contradiction to $\mu(a) = \mu(b)$. So $b \in I$. Thus I is a z-ideal.

Remark 4.2.27. Let L be a 0-1-distributive lattice L (that is, 0-distributive as well as 1-distributive). If $\bigcap_{M \in \text{Max}(L)} M = \{0\}$, then z-ideal need not be a Baer ideal.

For this, consider a lattice $L = \{X \subseteq \mathbb{N} | X$ is an infinite set $\} \cup \{\emptyset\}$. Clearly, L is a 0-distributive lattice under set inclusion and $\bigcap_{M \in \text{Max}(L)} M = \{0\}$. Let $I = (\mathbb{N} - \{1\}$ then $(\mathbb{N} - \{1\})^\perp = \{0\}$ implies $(\mathbb{N} - \{1\})^\perp = \{0\}^\perp = L$. Hence $(\mathbb{N} - \{1\})^\perp \notin (\mathbb{N} - \{1\}$. Therefore $(\mathbb{N} - \{1\}$ is not a Baer ideal. Since every maximal ideal is z-ideal, we have $(\mathbb{N} - \{1\}$ is a z-ideal.

Lemma 4.2.28. Let L be a 0-1-distributive lattice such that every Baer ideal is a z-ideal. Then $\bigcap_{M \in \text{Max}(L)} M = \{0\}$.

Proof. Suppose every Baer ideal is a z-ideal and $\bigcap_{M \in \text{Max}(L)} M \neq \{0\}$. Let...
\(a \in \bigcap_{M \in \text{Max}(L)} M \) implies \(\mu(a) = \mu(0) \). Since \((0] \) is a Baer ideal, by the hypothesis \((0] \) is a \(z \)-ideal. Then \(\mu(0) = \mu(a) \) and \(0 \in (0] \) implies \(a \in (0] \), a contradiction. Hence \(\bigcap_{M \in \text{Max}(L)} M = \{0\} \).

We conclude this section by combining Lemma 4.2.26, Lemma 4.2.28, and Theorem 4.2.6, we have the following result.

Theorem 4.2.29. Let \(L \) be a 0-1-distributive lattice. Then the following statements are equivalent.

1. Every Baer ideal is a \(z \)-ideal.
2. \(L \) is a dual semi-complemented.
3. \(\bigcap_{M \in \text{Max}(L)} M = \{0\} \).

4.3 \(z_J \)-ideals

Now, we extend the definition of \(z \)-ideal to \(z_J \)-ideal on similar lines of Alibad, Azarpanah and Taherifar [5].

Definition 4.3.1. Let \(I \) and \(J \) be two ideals of a lattice \(L \). The ideal \(I \) is said to be a \(z_J \)-ideal if \(M_a \cap J \subseteq I \) for all \(a \in I \).

Clearly, if \(J \subseteq I \), then \(I \) is always a \(z_J \)-ideal and hence an ideal \(I \) is always a \(z_I \)-ideal. Further, if \(J = L \), then \(z_L \)-ideal is nothing but \(z \)-ideal.

Lemma 4.3.2. If \(I \) is a \(z \)-ideal, then \(I \) is a \(z_J \)-ideal for any ideal \(J \) of a lattice \(L \).
Proof. Let \(a \in I \) and \(x \in M_a \cap J \). Then \(M_x \subseteq M_a \). This together with \(I \) is a \(z \)-ideal, we have \(x \in I \). Hence \(I \) is a \(z_J \)-ideal.

Remark 4.3.3. The following example shows that a \(z_J \)-ideal is not a \(z \)-ideal. Consider the lattice \(L \) depicted in Figure 4.3.1. Here \((b]\) is not a \(z \)-ideal, but it is \(z_J \)-ideal for \(J = (a] \).

\[
\begin{array}{c}
\circ 1 \\
\circ a \\
\circ \circ c \\
\circ b \\
\circ 0 \\
L
\end{array}
\]

Figure 4.3.1: The ideal \((b]\) is not a \(z \)-ideal but it is a \(z_J \) ideal for \(J = (a] \)

We recall the following definitions.

Definition 4.3.4. A prime ideal \(P \) of a lattice \(L \) is said to be **minimal prime ideal containing an ideal** \(I \), if \(I \subseteq P \) and there exists no prime ideal \(Q \) such that \(I \subsetneq Q \subsetneq P \).

The set of all prime ideals in a lattice \(L \) is denoted by \(\text{Spec}(L) \). The set of all minimal prime ideals containing an ideal \(I \) is denoted by \(\text{Min}(I) \). It is clear that a lattice is 0-distributive if and only if \(I = \{0\} \) is a semiprime ideal.

Lemma 4.3.5. Let \(I \) be a semiprime ideal and \(J \) be any ideal of a 1-distributive lattice \(L \). Then the following statements hold.

1. If \(I \) is a \(z_J \)-ideal (\(z \)-ideal) and \(P \in \text{Min}(I) \), then \(P \) is also a \(z_J \)-ideal (\(z \)-ideal).
2. A prime ideal P in L is a z_J-ideal if and only if P is either a z-ideal or $J \subseteq P$.

Proof. (1) Let P be a minimal prime ideal containing I. Suppose $x \in P$. We claim that $M_x \cap J \subseteq P$. Since $x \in P$, by Lemma 3.2.16(4), there exists $y \notin P$ such that $x \wedge y \in I$. Since I is a z_J-ideal, therefore we have $M_{x \wedge y} \cap J = M_x \cap M_y \cap J \subseteq I \subseteq P$, by Lemma 4.2.9. But $M_y \notin P$, and P is prime ideal gives $M_x \cap J \subseteq P$. Thus P is a z_J-ideal.

(2) Let P be a prime z_J-ideal such that $J \nsubseteq P$. Suppose $M_a \subseteq M_b$ and $b \in P$. Since P is a z_J-ideal, $M_b \cap J \subseteq P$. This together with $J \nsubseteq P$ gives $M_b \subseteq P$. But then $M_a \subseteq M_b$ gives $a \in M_a \subseteq P$. Thus P is a z-ideal.

Conversely, if $J \subseteq P$ then clearly, P is a z_J-ideal. Now, suppose $J \nsubseteq P$ and P is z-ideal. By Lemma 4.3.2, P is a z_J-ideal.

Proposition 4.3.6. Let I be a semiprime ideal, J be an ideal and P, Q are prime ideals of a 1-distributive lattice L. Then the following statements hold.

1. If $I \cap P$ is a z_J-ideal, then either I or P is a z_J-ideal.

2. If $P \cap Q$ is a z_J-ideal and P and Q are not comparable then P and Q are z_J-ideals.

Proof. (1) If $I \subseteq P$, then clearly, I is a z_J-ideal. Now, suppose that $I \nsubseteq P$ and $b \in P$. Take $a \in I \setminus P$. Hence $a \wedge b \in I \cap P$. Since $I \cap P$ is a z_J-ideal, we have $M_{a \wedge b} \cap J \subseteq I \cap P$. By Lemma 4.2.9, $M_a \cap M_b \cap J \subseteq P$. Since P is a prime and $M_a \nsubseteq P$, we get $M_b \cap J \subseteq P$. Hence P is a z_J-ideal.

(2) Follows from (1).
Lemma 4.3.7 (Rav [58]). Every semiprime ideal I of a lattice L is an intersection of minimal prime ideals containing I.

Lemma 4.3.8. Let $I = (a]$ be a principal ideal of a lattice L. Then $I_z = M_a$.

Proof. Let $I = (a]$. Obviously $I_z \subseteq M_a$. Now, we will show that $M_a \subseteq I_z$. Let $x \in M_a$ and J be any arbitrary z-ideal containing $I = (a]$. Since J is z-ideal and $x \in M_a$, we have $x \in J$. Thus $x \in I_z$. So $M_a = I_z$. □

Lemma 4.3.9. Let I and J be two ideals of a distributive lattice L. Then $(I \cap J)_z = I_z \cap J_z$.

Proof. Clearly, $I_z \cap J_z$ is a z-ideal containing $I \cap J$. To prove $(I \cap J)_z = I_z \cap J_z$, it is enough to show that $I_z \cap J_z$ is the smallest z-ideal containing $I \cap J$. To see this, let K be a z-ideal and $I \cap J \subseteq K$. Since L is distributive, K is semiprime. By Lemma 4.3.7, $K = \bigcap_{P \in \text{Min}(K)} P$. Since for each $P \in \text{Min}(K)$, we have $I \cap J \subseteq P$, then either $I \subseteq P$ or $J \subseteq P$. By Lemma 4.3.5, each $P \in \text{Min}(K)$ is a z-ideal. Using this fact along with I_z is the smallest z-ideal containing I, we have $I_z \cap J_z \subseteq P$, therefore $I_z \cap J_z \subseteq \bigcap_{P \in \text{Min}(K)} P = K$. □

Remark 4.3.10. Note that the assertion of Lemma 4.3.9 is not true in non-distributive lattices. Consider the non-distributive lattice depicted in Figure 4.2.2 on page 68. Let $I = (a]$ and $J = (b]$. Then $I_z = J_z = (d]$ and $(I \cap J)_z = (0]_z = \{0\}$. Thus $(I \cap J)_z \nsubseteq I_z \cap J_z$.

In the following result, we characterize z_J-ideals in lattices.
4.3 \(z_J \)-ideals

Theorem 4.3.11. Let \(I \) be a semiprime ideal of a lattice \(L \). Let \(J \) be an ideal of \(L \). Then the following statements are equivalent.

1. \(I \) is a \(z_J \)-ideal.

2. \(I \cap J \subseteq I \) (equivalently, \(I \cap J = I \cap J \)).

3. There is a \(z \)-ideal \(K \) containing \(I \) exists, and \(K \cap J \subseteq I \).

4. For each \(a \in I \) and \(b \in J \) if \(M_b \subseteq M_a \), then \(b \in I \).

Proof. (1)\(\Rightarrow \) (2): Let \(I \) be a semiprime \(z_J \)-ideal. By Lemma 4.3.7, \(I = \bigcap_{P \in \text{Min}(I)} P \). Hence \(I_z = (\bigcap_{P \in \text{Min}(I)} P \bigcap) \subseteq (\bigcap_{P \in \text{Min}(I)} P_z \bigcap) \). By Lemma 4.3.5, \(P_z = P \) or \(J \subseteq P \). Hence either in the case, we have \(I_z \cap J = (\bigcap_{P \in \text{Min}(I)} P \bigcap) \cap J = (\bigcap_{P \in \text{Min}(I)} P_z \bigcap) \cap J = I \cap J \subseteq I \).

(2)\(\Rightarrow \) (3): Take \(K = I_z \).

(3)\(\Rightarrow \) (4): Let \(a \in I \) and \(b \in J \) with \(M_b \subseteq M_a \). By (3), there exists a \(z \)-ideal \(K \) containing \(I \) such that \(K \cap J \subseteq I \). Then by Lemma 4.2.15, \(M_a \subseteq K \). Clearly, \(b \in M_b \subseteq M_a \). Hence \(b \in M_a \cap J \subseteq K \cap J \subseteq I \). Thus \(b \in I \).

(4)\(\Rightarrow \) (1): Let \(a \in I \) and \(x \in M_a \cap J \). Then by Lemma 4.2.14, \(M_x \subseteq M_a \).

Now by (4), we get \(x \in I \). Thus \(I \) is a \(z_J \) ideal.

Remark 4.3.12. From Theorem 4.3.11, it is easy to obtain Lemma 4.2.15 by replacing an ideal \(J \) by a lattice \(L \).

Lemma 4.3.13. The following statements hold in any lattice \(L \).

1. If \(I = I_1 \cap I_2 \), \(J = J_1 \cap J_2 \), and \(I_1 \) is a \(z_{J_1} \)-ideal, \(I_2 \) is a \(z_{J_2} \)-ideal, then \(I \) is a \(z_J \)-ideal.
2. If $J \subseteq K$ and I is a z_k-ideal, then I is also a z_J-ideal.

3. An intersection of z_J-ideals (z-ideals) is a z_J-ideal (z-ideal).

4. If $I \subseteq J$, I is a z_J-ideal and J is a z_K-ideal, then I is a z_K-ideal.

Proof. 1) Let $c \in I = I_1 \cap I_2$. Since I_1, I_2 are z_{J_1}-ideal and z_{J_2}-ideal respectively, we have $M_c \cap J_1 \subseteq I_1$ and $M_c \cap J_2 \subseteq I_2$. This gives $M_c \cap J_1 \cap J_2 \subseteq I_1 \cap I_2$. Thus $M_c \cap J \subseteq I$ as required.

2) Easy to prove.

3) Obvious.

4) Let $a \in I \subseteq J$. Since I is a z_J-ideal and J is a z_K-ideal, we have $M_a \cap J \subseteq I$ and $M_a \cap K \subseteq J$. This gives $M_a \cap K \subseteq M_a \cap J \subseteq I$. Thus I is a z_K-ideal.

We have the following result, by Part (3) of Lemma 4.3.13 and Lemma 4.2.2.

Lemma 4.3.14. The Jacobson radical $J = \bigcap_{M \in \text{Max}(L)} M$ is a z-ideal and is contained in every z-ideal.

Let $Id_z(L)$ denotes the set of all z-ideals of a lattice L. Then we have the following result.

Theorem 4.3.15. Let L be a bounded lattice. Then $Id_z(L)$ is a complete lattice

Lemma 4.3.16. Let L be a 1-distributive lattice. Then I is a z_J-ideal if and only if $I \cap J$ is a z_J-ideal.

Proof. Let $a \in I \cap J$. Then $a \in I$ and I is a z_J-ideal give $M_a \cap J \subseteq I$. This further yield $M_a \cap J \subseteq I \cap J$. Thus $I \cap J$ is a z_J-ideal.
Conversely, assume that $a \in I$ and $x \in M_a \cap J$. Then $a \land x \in I \cap J$. Since $I \cap J$ is a z_J-ideal, we have $M_{a \land x} \cap J \subseteq I \cap J$. By Lemma 4.2.9, $M_{a \land x} = M_a \cap M_x$. Since $x \in M_a$, we have $M_x \subseteq M_a$. Thus $M_x \cap J \subseteq I \cap J$. Now, $x \in M_x \cap J \subseteq I \cap J \subseteq I$, gives $x \in I$. Thus $M_a \cap J \subseteq I$. Hence I is a z_J-ideal.

We close this chapter with the following result.

Theorem 4.3.17. Let I, J and K be ideals of a lattice L. Then the following statements hold.

1. An ideal I of a distributive lattice L is a z_J-ideal if and only if I is a $z_{I \lor J}$-ideal.

2. If J is a z-ideal, then I is a z_J-ideal if and only if $I \cap J$ is a z-ideal.

3. $I \cap J$ is both z_I-ideal and z_J-ideal if and only if I is a z_J-ideal and J is a z_I-ideal; provided that L is a 1-distributive lattice.

4. If M is a maximal ideal in a distributive lattice L, then $I \cap M$ is a z-ideal if and only if I is a z-ideal.

5. Let L be a distributive lattice. Then $I_z \cap J$ is the smallest z_J-ideal containing $I \cap J$.

6. If I is a semiprime ideal and $I \subseteq K$, $I_z = K_z$, I is a z_J-ideal then K is also a z_J-ideal.

Proof. (1) Let I be a z_J-ideal. Then $M_a \cap J \subseteq I$ for all $a \in I$. Clearly, $M_a \cap I \subseteq I$. Since L is distributive, the ideal lattice $Id(L)$ is distributive,
we have $M_a \cap (I \vee J) \subseteq I$ for all $a \in I$. Hence I is a $z_{J\vee I}$-ideal. The converse is obvious.

(2) Let I be a z_J-ideal and $\mu(b) \subseteq \mu(a)$, $b \in I \cap J$. Since $\mu(b) \subseteq \mu(a)$ and $b \in J$ implies that $a \in J$ (as J is a z-ideal). Now $a \in M_a \cap J$ and $M_a \cap J \subseteq I$ (since I is a z_J-ideal). Thus $a \in I \cap J$. Hence $I \cap J$ is a z-ideal. The converse is obvious.

(3) Follows from Lemma 4.3.16.

(4) Let $I \cap M$ be a z-ideal. If $I \subseteq M$ implies that $I = I \cap M$. Suppose $I \not\subseteq M$, then by (3), I is a z_M-ideal. By Part (1) I is a $z_{M\vee I}$-ideal, i.e., z_L ideal. But z_L ideals are nothing but z-ideals. Hence I is a z-ideal. The converse is obvious.

(5) Clearly, $I_z \cap J$ is a z_J-ideal containing $I \cap J$. Now, suppose that K is a z_J-ideal containing $I \cap J$. Hence $I_z \cap J = I_z \cap J_z \cap J = (I \cap J)_z \cap J \subseteq K_z \cap J \subseteq K$, by Lemma 4.3.9 and Theorem 4.3.11.

(6) If I is a z_J-ideal then $I_z \cap J \subseteq I$. Hence $K_z \cap J = I_z \cap J \subseteq I \subseteq K$. Hence K is a z_J-ideal. \qed