TABLE OF CONTENTS

Chapter I; Introduction

1.1 Introduction .. 2
1.2 Nucleic Acids .. 2
1.3 Polarography ... 10
1.4 Other Voltammetric Methods 15
1.5 Reaction Kinetics 16
1.6 Scope of our Study 21
1.7 References ... 22

Chapter II; Instruments and Methods

2.1 Introduction ... 27
2.2 Polarography ... 27
2.3 Hydrodynamic Voltammetry 31
2.4 pH metery .. 32
2.5 UV-Visible Spectroscopy 34
2.6 FT-IR Spectroscopy 39
2.7 Nuclear Magnetic Resonance 42
2.8 References ... 45

Chapter III; Polarographic Determination of Cytosine and Quantitative Estimation of its Nucleophilicity Complemented by Hydrodynamic Voltammetry

SECTION A (Polarographic Study)

3.1 Introduction ... 48
3.2 Instrumentation used 49
3.3 Chemicals used 49
3.4 Preparation of solutions 49
3.5 Polarographic estimation of nucleobase cytosine

SECTION B (Rapid Kinetics Study)

3.6 Rapid bromination study of cytosine in aqueous medium by hydrodynamic voltammetry

3.7 Kinetic investigations at varying conditions of pH

3.8 Suggested reaction mechanism for bromination of cytosine by Br₂

3.9 Conclusions and summary

3.10 References

Chapter IV; Polarographic Determination of the Nucleotide Cytidine Monophosphate at Dropping Mercury Electrode

4.1 Introduction

4.2 Instruments used

4.3 Chemicals used

4.4 Preparation of solutions

4.5 Polarographic estimation of cytidine monophosphate

4.6 Conclusions

4.7 References

Chapter V; Study of Rapid Bromination of Uracil and Adenine Nucleobases by Molecular Bromine in Aqueous Medium

5.1 Introduction

5.2 Instruments used

5.3 Chemicals used

5.4 Preparation of solutions

5.5 Calibration of diffusion current

5.6 Kinetic study of uracil

5.7 Suggested reaction mechanism for bromination of uracil by Br₂

5.8 Description of FT-IR and NMR graphs
5.9 Kinetic study of Adenine nucleobase 99
5.10 Suggested reaction mechanism for bromination of adenine 104
5.11 Conclusion 104
5.12 References 105

Chapter VI; Study of Rapid Iodination of Uracil and Cytosine Nucleobases by Molecular Iodine in Aqueous Medium by Hydrodynamic Voltammetry

6.1 Introduction 107
6.2 Instruments used 107
6.3 Chemicals used 107
6.4 Preparation of solutions 107
6.5 Kinetic measurements of cytosine 108
6.6 Kinetics of iodination of uracil 113
6.7 Suggested reaction mechanism 118
6.8 Conclusions 118
6.9 References 119

Chapter VII; The Chlorination Study of the Nucleotide Guanosine Monophosphate (GMP) by Hypochlorous acid (HOCl) at a Rotating Platinum Electrode

7.1 Introduction 121
7.2 Instruments used 122
7.3 Chemicals used 122
7.4 Preparation of solutions 122
7.5 Chlorination of Guanosine monophosphate by HOCl at a rotating platinum electrode 123
Chapter VIII; Conclusions and summary

8.1 Conclusions and summary of the work 133
8.2 Future Avenues in this field 134