TABLE OF CONTENTS

Abstract 3

List of Tables 8

List of Figures 9

Chapter 1 Introduction 11

1.1 Background 11

1.2 Research Objectives 12

1.3 Motivation 14

1.4 Outline of the Thesis 15

1.5 Limitations 16

Chapter 2 Literature Review 18

Chapter 3 Materials and Methods 25

3.1 Introduction 25

3.1.1 Modeling Techniques Vs Applications

3.1.1.1 Problem Classification

3.1.1.2 Modeling Techniques

3.2 Decision-Making Techniques & Land Use Planning

3.2.1 Multi Criteria Decision Making (MCDM) 35

3.2.1.1 Analytical Hierarchy Process (AHP)

3.2.1.2 Compromise Programming (CP) 37
3.2.2 Multi-Objective Multi-Criteria Decision-Making

3.2.2.0 Methodology

3.2.2.1 Fuzzy Classification in GIS

3.2.2.2 Implementation

3.2.2.3 Validation

3.2.2.4 Conclusion

3.3 Optimal Land Use Planning

3.3.1 Land and Water Resource Development Framework for community-centric planning

3.3.1.1 Alternate Land Resource Development Plan

3.3.1.2 Dynamic Modeling Environment involving socio-economic data for generating optimum land resource development plan using Linear Programming model

3.3.2 How the application will work in totality?

3.3.2.1 What if Scenarios

3.3.3 Results

3.3.4 Discussion

3.3.5 Conclusion

3.4 Spatial Dynamic Modeling technique for land use change dynamics

3.4.1 Cellular Automata

3.4.2 State-based Cellular Automata
3.4.3 Suitability-based Cellular Automata
3.4.4 Multi Criteria Evaluation technique for Land Suitability analysis
3.4.5 Probability-based Cellular Automata
3.4.6 Results and Discussion
3.4.7 Conclusion

Chapter 4 Discussion

4.1 Multi-Criteria Decision-Making
4.1.1 Analytical Hierarchy Process (AHP)
4.1.2 Compromise Programming
4.2 Multi-Objective Multi-Criteria Decision-Making
4.2.1 Fuzzy Classification in GIS
4.3 Optimization technique
4.4 Dynamic Spatial Modeling
4.5 Challenges
4.5.1 Fuzzy Logic methods in GIS
4.5.2 Multi Agent Systems
4.6 Conclusion

Chapter 5 Conclusions

References
APPENDICES

Appendix - 1 152
Appendix - 2 159
Appendix - 3 166
Appendix - 4 169
Appendix - 5 176
Appendix - 6 187
Appendix - 7 194
Research Publications 203
LIST OF TABLES

Table 1 Weightages of land-related criteria for generating land and water resource development plans 46
Table 2 A Sample Format of Decision Rules 53
Table 3 Area Estimates of the alternate / optimal crops 88-89
Table 4 Weightages for land degradation driver variables 98
Table 5 Calibration and Validation report 105
LIST OF FIGURES

Figure 1 Diagram showing the correspondence between Modeling Techniques, Problem Classification & Applications

Figure 2 Flowchart showing the steps involved in generating land and water resource development plans

Figure 3 Fuzzy Logic approach-based Land Resource Development Plan

Figure 4 Fuzzy Logic approach-based Water Resource Development Plan

Figure 5 Village Resource Center (VRC) Framework

Figure 6 Fuzzy-logic based First Best Crops for Kharif Season

Figure 7 Fuzzy-logic based Second Best Crops for Kharif Season

Figure 8 Fuzzy-logic based First Best Crops for Summer Season

Figure 9 Fuzzy-logic based Second Best Crops for Summer Season

Figure 10 Kharif first best crops optimized for maximum employment

Figure 11 Kharif first best crops optimized for maximum profit

Figure 12 Kharif first best crops optimized for minimum water use

Figure 13 Existing Land Use Map

Figure 14 Flow Chart describing the Cellular Automata methodology

Figure 15a Calibration result for Cellular Automata simulation of Land Degradation

Figure 15b Validation result for Cellular Automata simulation of Land Degradation

Figure 16 Simulation of Land Degradation using Cellular Automata model (1991 - 2012)

Figure 17 A graph showing prediction results of the simulation