Mrs. RAJESWARI GANGADHARAN, M.Sc., M.Phil.
Assistant Professor
Department of Physics
Ethiraj College for Women (Autonomous)
Chennai - 600 004, Tamil Nadu, India.

DECLARATION

I hereby declare that the thesis entitled “X-RAY CRYSTALLOGRAPHIC, MOLECULAR DOCKING AND DYNAMICS STUDIES OF SOME BIOLOGICALLY SIGNIFICANT ORGANIC COMPOUNDS” submitted to the University of Madras for the award of the degree of Doctor of Philosophy is the original and independent work carried out by me in the Department of Physics, RKM Vivekananda College (Autonomous), Mylapore, Chennai, during the period 2010–2017 under the supervision of Dr. K. Sethusankar, Associate Professor and Head, Department of Physics, RKM Vivekananda College (Autonomous), Mylapore, Chennai and that the thesis has not formed previously the basis for the award of any other degree, diploma, associateship, fellowship or any other similar titles.

Date:
Place: Chennai (RAJESWARI GANGADHARAN)

Countersigned by

Dr. K. SETHUSANKAR
Associate Professor and Head
Department of Physics
RKM Vivekananda College (Autonomous)
Chennai – 600 004, Tamil Nadu, India.
Acknowledgement

I offer my sincere gratitude to my guide, Dr. K. Sethusankar for his consistent support and gentle encouragement throughout the course of my research. I thank him for his patience, for having faith in me and for giving me the intellectual freedom in my work, which made my research experience truly rewarding.

I express my sincere thanks to Swami Shukadevananda, Secretary, Dr. S. Thirunavukkarasu, Principal, Sri. A. Balamuralikrishnan, Office Superintendent, RKM Vivekananda College (Autonomous), Chennai for their help and support throughout my research period.

I would like to thank the Doctoral committee members Prof. D. Velmurugan, BSR-UGC Faculty, Former Professor and Head, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai and Dr. A. Subbiah Pandi, Regional Joint Director, Government Arts College Campus, Dharmapuri for their insightful suggestions and advice throughout the course of my research.

My sincere thanks are due to Dr. V. Murugan, former Head, Department of Physics, RKM Vivekananda College (Autonomous), Chennai for his concern and encouragement.

I place on record my sincere thanks to Dr. A. Nirmala, Principal, Ethiraj College for Women, for always encouraging me to pursue research. The support given by Dr. M. Shahida Banu, Head, Department of Physics, Ethiraj College for Women, is acknowledged with sincere gratefulness. It would have been extremely difficult for me to manage the schedules of a part-time Ph.D, if I had not received the invaluable support extended to me by Mrs. S. Abhirami, Head, PG Department of Physics, Ethiraj College for Women.
I express my gratitude to Dr. A. K. Mohanakrishnan, Associate Professor, and Mr. V. Saravanam, Research Scholar, Department of Organic Chemistry, University of Madras, Dr. M. Bakhadoss, Associate Professor, Dr. N. Sivakumar, Dr. G. Murugan and Mr. R. Selvakumar, Research Scholars, Department of Organic Chemistry, University of Madras for the synthesis of the chemical samples used in my study.

My sincere gratitude also to Dr. P. T. Perumal, Chief Scientist & Head, Dr. Kiruthika E. Selvarangam, Research Scholar, Organic Chemistry Division, Central Leather Research Institute, Dr. R. Karvembu, Associate Professor, Dr. A. Sreekanth, Associate Professor, Mr. Jebiti Haribabu and Mr. Mathiyan Muralisankar, Research Scholars, Department of Chemistry, NIT, Trichy, for providing me the chemical samples used in my study.

For their whole hearted and timely assistance in procedural matters and their valuable suggestions, I am deeply indebted to my fellow research mates, Mr. K. Swaminathan, Dr. P. Narayanan and Mr. S. Gopinath. I also thank Dr. S. Karthikeyan, Dr. G. Jagadeesan, Dr. Antony Ingelbert and Mr. M. Manimaran for their co-operation.

A special thanks to Dr. Babu Varghese, Dr. R. Jagan and Dr. R. Sudha, SAIF, IIT-Madras, Dr. T. Srinivasan, CAS in Crystallography & Biophysics, University of Madras, for their help in collecting X-ray intensity data and also for vital inputs.

The help rendered by Dr. K. Gunasekaran, Assistant Professor, CAS in Crystallography and Biophysics, in allowing me to use the facilities at the BIF Centre, University of Madras to carry out the Molecular Docking studies is acknowledged with a deep sense of gratitude. I thank Mr. Anantha Krishnan, Research Scholar, CAS in Crystallography and Biophysics who provided a supportive atmosphere, gave discerning suggestions and feedback for the docking studies carried out by me.
It would have been almost impossible for me to carry out my work in Molecular dynamics without the support of Dr. R. Krishna, Associate Professor, Department of Bioinformatics, Pondicherry University. I thank him for providing me the necessary technical help and guidance for the groundwork required to carry out the MD simulations. I am also deeply obliged to Mr. Nishith Toponov, Research scholar, Department of Bioinformatics, Pondicherry University, for tutoring me on the use of GROMACS.

The camaraderie that I share with my colleagues from the Department of Physics Ethiraj College is deeply cherished and valued by me. I cannot thank them enough for motivating me and for rising to the occasion whenever their assistance was required. My profound thanks to Ms. J. Bhavani, Dr. A. V. Jhone Verjula, Dr. S. Leela, Ms. N. Aparna Devi, Ms. J. Bella and Ms. P. J. Gracie for the tremendous support extended.

I am truly grateful to the previous Heads of the Department of Physics, Ethiraj College for Women, for training me and for honing my capabilities. My special thanks to Dr. A. Jeyabharathi for encouraging me and giving me the confidence to take up research.

I could not have embarked on this long research journey nor completed it had it not been for the unwavering support of my family. I thank my family for having patiently endured all the inconveniences caused due to my erratic schedule. I cannot thank my husband Mr. S. Muralidharan enough, for always encouraging me to follow my passion and for standing by me through thick and thin. I thank my son Mr. Rohan and daughter Ms. Neha from the bottom of my heart for their understanding and reassuring love.

I am also deeply indebted to my sisters, brothers, sisters in law and all my close friends for the warmth and strength they gave me to follow this dream.
It is with a deep sense of respect that I remember and thank my parents-in-law for having been such great role models and for their progressive thinking which has always been a motivation.

I dedicate my thesis and my work to the fond memory of my parents, whose love for me continues to be a blessing in my life. No words are sufficient to express the gratitude I feel. They will always remain the greatest influence and inspiration in my life.

--
PREFACE

This thesis entitled "X-RAY CRYSTALLOGRAPHIC, MOLECULAR DOCKING AND DYNAMICS STUDIES OF SOME BIOLOGICALLY SIGNIFICANT ORGANIC COMPOUNDS" is a report of the research work carried out by the candidate during the period 2010-2017 under the guidance of Dr. K. Sethusankar, Associate Professor and Head, Department of Physics, RKM Vivekananda College (Autonomous), Mylapore, Chennai -600004.

Being non-destructive in nature and having wavelengths similar to molecular dimensions, X-rays are ideally suited probes for exploring the geometrical arrangement of three-dimensional arrays of molecules in crystals. The diffraction pattern obtained from X-ray scattering by crystals can be processed by mathematical algorithms to provide a molecular structure with unambiguous atomic details including atomic positions, conformational features and the symmetries involved in generating the entire crystalline substance. As there is an intimate relation between structure and function of molecular systems the precise molecular structures obtained from X-ray crystallography can be used to derive functional information of chemical and biological systems at the molecular level.

This thesis reports the results from single crystal X-ray crystallographic structural investigations, molecular docking and molecular dynamics studies of some biologically significant organic compounds. The thesis contains seven chapters and has been organized into two parts.
Part I comprising five chapters describes the X-ray crystallographic structural studies of some isoxazole, acrylate, indole, hydrazine carbothioamide and carbazole derivatives. The intensity data for all the compounds reported in this thesis were collected using Bruker axs SMART and KAPPA APEXII area-detector diffractometer.

Chapter I describes the crystal structure determination and analysis of two isoxazole derivatives. The two isoxazole derivatives crystallize in monoclinic crystal system with the space group of P2₁/c. The five membered isoxazole rings in the two compounds adopt an envelope confirmation and the six membered pyran rings in the two compounds display sofa and half-chair conformations. The crystal packing is seen to be stabilized by C—H···π interactions in these compounds.

Chapter II elucidates the crystal structure determination and analysis of two acrylate derivatives. The methyl acrylate units in both the compounds are found to be essentially planar. In the two derivatives the double bond between the carbon atoms C9 and C12 is a trans in nature. The difference between the C—O bond lengths of the methyl acrylate group in both compounds indicate the presence of resonance structures. The crystal packing is seen to be stabilized by C—H···O and C—H···π interactions in these compounds.

Chapter III deals with the crystallographic studies of three indole derivatives. In the three derivatives the indole bicyclic ring system is not
strictly planar. The five membered pyrrolidine and furan rings are found to adopt envelope and twisted confirmations, respectively. In the indole moiety, the fusion of the smaller pyrrole ring to the six membered benzene ring causes a strain which is taken up by angular distortions. The crystal packing is essentially stabilized by O—H···O, N—H···O and C—H···O interactions in all the three derivatives.

Chapter IV details the crystallographic studies of four hydrazine carbothioamide derivatives. The thiourea group in the four derivatives is found to be essentially planar. The cyclohexane in CTA I and the pyran ring in CTA3 are found to exhibit chair and screw boat confirmations, respectively. The crystal packing in the four derivatives involves N—H···S, O—H···S, N—H···O, C—H···Cl, C—H···O and C—H···π interactions.

Chapter V discusses the crystal structure determination and analysis of three carbazole derivatives. The carbazole moiety in the three compounds is essentially planar. Atom S1 in the three derivatives is found to have a distorted tetrahedral configuration. The benzene ring of the phenylsulfonyl group is almost perpendicular to the carbazole moiety in compounds I and III. The crystal packing in all three compounds is stabilized by intermolecular C—H···O and C—H···π hydrogen bonds.

Part II consisting of chapters VI and VII explains the activity studies taken up for the fourteen small molecules whose structures were determined as detailed above. Molecular docking estimates the binding orientation and
affinity of possible drug candidates to specific targets and hence predicts the activity of the small molecule. Biological macromolecules such as proteins exist in a dynamic state of motion which is essential for their specific functions such as intermolecular protein-ligand binding. Molecular dynamics simulations provide a means to model the flexibility and conformational changes in proteins associated with ligand binding.

Chapter VI Results of the docking studies undertaken using Schrodinger’s GLIDE software are discussed in detail in chapter VI. The two isoxazole derivatives were individually docked with human Bromodomain4 (BET-BRD4) as target protein to examine their anti-proliferative effects. Human Factor Xa (FXa) was used as the protein target for docking with each of the two acrylate derivatives to investigate their activity as possible anticoagulant agents. Activity studies of the three indole derivatives were carried out by docking them individually with Cyclin Dependent Kinase2 (CDK2) to explore their anticancer activity. Human Carbonic anhydrase(CA) was chosen as target protein for docking studies of each of the four hydrazine carbothioamide derivatives. Human TopoisomeraseIIβ was used for docking of the three carbazole derivatives to examine their DNA intercalating activity. The binding affinity of the docked complexes were evaluated in terms Glide energy and docking scores. The hydrogen bond and hydrophobic interactions between the docked molecules and target proteins were analysed based on their Pymol and Ligplots diagrams.
Chapter VII GROMACS software was used for molecular dynamics simulation of three of the docked complexes which showed high affinity between protein and ligand. Results of the Molecular dynamics simulations of the \textit{BRD4-ISZ1}, \textit{CDK2-IND3} and \textit{CA-CTA3} docked complexes have been discussed in chapter VII. The resulting trajectory was used to analyse the stability of the complex formed using RMSD and Radius of gyration values of the complexes, to identify the hydrogen bonds formed and to estimate the binding association of the complexes.

The following research papers have been published based on this research work:

List of Publications:

1. 3’-Hydroxymethyl-1’-methyl-3’-nitro-4’-(o-tolyl)spiro-[indoline-3,2’-pyrrolidin]-2-one

2. 1-Methyl-3-(naphthalen-1-yl)-3,3a,4,9b-tetrahydro-1Hchromeno[4,3-c]isoxazole-3a carbonitrile

3. 1-Methyl-3-p-tolyl-3,3a,4,9b-tetrahydro-1H-chromeno[4,3-c]isoxazole-3a carbonitrile

4. (Z)-Methyl 2-[(2-ethoxy-6-formylphenoxy)methyl]-3-(4-ethylphenyl)acrylate
5. (Z)-Methyl 3-(2,4-dichlorophenyl)-2-[(2-formylphenoxy)methyl]acrylate

6. Methyl 4’-(4-bromoanilino)-2’,5-dioxo-5H-spiro[furan-2,3’-indoline]-3-carboxylate

7. Methyl 4-anilino-2’,5-dioxo-1’,2’-dihydro-5H-spiro[furan-2,3’-indole]-3-carboxylate

8. *(E)*-2-[(4-chloro-2H-chromen-3-yl)methylidene]-N-cyclohexyl hydrazine carbothioamide

9. Crystal structures of two hydrazinecarbothioamide derivatives: *(E)*-N-ethyl-2-(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemihydrate and *(E)*-2-[(4-chloro-2H-chromen-3-yl)methylidene]-N-phenylhydrazine-carbothioamide

10. Crystal structure of 3-[(E)-(2-hydroxy-3-methoxybenzylidene)amino]-1-methyl-1-Phenylthiourea

X-RAY CRYSTALLOGRAPHIC, MOLECULAR
DOCKING AND DYNAMICS STUDIES OF SOME BIOLOGICALLY
SIGNIFICANT ORGANIC COMPOUNDS

PART-I

Introduction to X-ray Crystallography

CHAPTER I
Crystal Structure Determination of Isoxazole Derivatives

1.1 Introduction
1.2 Experimental Procedure
 1.2.1 Intensity Data Collection
 1.2.2 Structure Solution and Refinement
1.3 Results and Discussion
 1.3.1 ISZ1
 1.3.2 ISZ2
1.4 Puckering and Asymmetric Parameters
1.5 Packing Features

CHAPTER II
Crystal Structure Determination of Acrylate Derivatives

2.1 Introduction
2.2 Experimental Procedure
 2.2.1 Intensity Data Collection
 2.2.2 Structure Solution and Refinement
2.3 Results and Discussion
 2.3.1 ACR1
 2.3.2 ACR2
2.4 Packing Features
CHAPTER III
Crystal Structure Determination of Indole Derivatives 51-68
 3.1 Introduction 51
 3.2 Experimental Procedure 55
 3.2.1 Intensity Data Collection 56
 3.2.2 Structure Solution and Refinement 57
 3.3 Results and Discussion 58
 3.3.1 IND1 59
 3.3.2 IND2 61
 3.3.3 IND3 62
 3.4 Puckering and Asymmetric Parameters 64
 3.5 Packing Features 67

CHAPTER IV
Crystal Structure Determination of Carbothioamide Derivatives 69-88
 4.1 Introduction 69
 4.2 Experimental Procedure 73
 4.2.1 Intensity Data Collection 75
 4.2.2 Structure Solution and Refinement 76
 4.3 Results and Discussion 77
 4.3.1 CTA1 78
 4.3.2 CTA2 79
 4.3.3 CTA3 81
 4.3.3 CTA4 82
 4.4 Puckering and Asymmetric Parameters 84
 4.5 Packing Features 86
CHAPTER V

Crystal Structure Determination of Carbazole Derivatives

5.1 Introduction 89
5.2 Experimental Procedure 92
 5.2.1 Intensity Data Collection 95
 5.2.2 Structure Solution and Refinement 96
5.3 Results and Discussion 96
 5.3.1 CAR1 97
 5.3.2 CAR2 99
 5.3.3 CAR3 101
5.4 Packing Features 102

PART-II

CHAPTER VI

Molecular Docking Studies

6.1 Introduction 105
6.2 Materials and Methods 109
6.3 Molecular Docking Studies of Isoxazole derivatives with Bromodomain and Extra-C Terminal Domain protein
 6.3.1 Introduction 110
 6.3.2 Results and Discussions 112
6.4 Molecular Docking Studies of Acrylate derivatives with Human FactorXa
 6.4.1 Introduction 114
 6.4.2 Results and Discussions 115
6.5 Molecular Docking Studies of Indole derivatives with Cyclin Dependant Kinase 2
 6.5.1 Introduction 118
 6.5.2 Results and Discussions 119
6.6 Molecular Docking Studies of Hydrazine Carbothioamide derivatives with Human Carbonic Anhydrase Isozyme II 121
6.6.1 Introduction 121
6.6.2 Results and Discussions 123
6.7 Molecular Docking Studies of Carbazole derivatives 126
with Topoisomerase IIβ 126
6.7.1 Introduction 126
6.7.2 Results and Discussions 127

CHAPTER VII

Molecular Dynamics Studies 129-140
7.1 Introduction 129
7.2 Materials and Methods 134
7.3 Molecular dynamics study of the docked complex of isoxazole derivative (ISN1) with Bromodomain and Extra-C Terminal Domain protein (5HM0) 135
7.4 Molecular dynamics study of the docked complex of indole derivative (IND3) with Cyclin Dependent Kinase 2 protein (1KE8) 137
7.5 Molecular dynamics study of the docked complex of hydrazine carbothioamide derivative (CTA3) with Carbonic Anhydrase (3M40) 139

References
Enclosure
(i) Compact Disc (CD)