CONTENTS

<table>
<thead>
<tr>
<th>P.No.</th>
<th>Chapter I (Introduction and Objective of Present Investigation):</th>
<th>1-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Chapter II:</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Materials</td>
<td></td>
</tr>
<tr>
<td>2.1a</td>
<td>Instruments</td>
<td></td>
</tr>
<tr>
<td>2.1b</td>
<td>Chemicals</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>2.2.1</td>
<td>Hydrolysis of O-Phosphonomannan Y-2448</td>
<td></td>
</tr>
<tr>
<td>2.2.2</td>
<td>Preparation of Affinity Matrices</td>
<td></td>
</tr>
<tr>
<td>2.2.3</td>
<td>Preparation of Acetone Powder</td>
<td></td>
</tr>
<tr>
<td>2.2.4</td>
<td>Extraction of Membrane Proteins and Purification of MPRs</td>
<td></td>
</tr>
<tr>
<td>2.2.5</td>
<td>Purification of MPRs by Affinity Chromatography</td>
<td></td>
</tr>
<tr>
<td>2.2.6</td>
<td>Protein Estimation</td>
<td></td>
</tr>
<tr>
<td>2.2.7</td>
<td>SDS-Poly Acrylamide Gel Electrophoresis</td>
<td></td>
</tr>
<tr>
<td>2.2.8</td>
<td>Silver Staining</td>
<td></td>
</tr>
<tr>
<td>2.2.9</td>
<td>Raising Antibodies to the Purified Receptor</td>
<td></td>
</tr>
<tr>
<td>2.2.10</td>
<td>Iodination of Proteins</td>
<td></td>
</tr>
<tr>
<td>2.2.11</td>
<td>Analysis of the Iodinated Protein Samples</td>
<td></td>
</tr>
<tr>
<td>2.2.11a</td>
<td>TCA Precipitation of Iodinated Protein</td>
<td></td>
</tr>
<tr>
<td>2.2.11b</td>
<td>Repurification of Iodinated Receptor Protein</td>
<td></td>
</tr>
<tr>
<td>2.2.11c</td>
<td>Determination of pH Optimum</td>
<td></td>
</tr>
<tr>
<td>2.2.11d</td>
<td>Immunoprecipitation of the Iodinated MPR Protein</td>
<td></td>
</tr>
<tr>
<td>2.2.12</td>
<td>Metabolic Labeling of Cells and Extraction of Membrane Proteins</td>
<td></td>
</tr>
<tr>
<td>2.2.12a</td>
<td>Immuno Precipitation of Metabolically Labeled Proteins</td>
<td></td>
</tr>
<tr>
<td>2.2.13</td>
<td>Fluorography</td>
<td></td>
</tr>
<tr>
<td>2.2.14</td>
<td>Deglycosylation</td>
<td></td>
</tr>
<tr>
<td>2.2.15</td>
<td>Intracellular Immuno fluorescence Staining</td>
<td></td>
</tr>
<tr>
<td>2.2.16</td>
<td>Protein Sequencing</td>
<td></td>
</tr>
</tbody>
</table>
Reductive Carboxymethylation of *Unio* MPR 300

Desalting on Sephadex-G-25 Column by HPLC

Tryptic Digestion

Separation of *Unio* MPR 300 Tryptic Peptides by Reverse Phase-HPLC

N-Terminal Sequencing by Edman's Degradation Method

Results

Affinity Purification and Separation of Goat MPR proteins

Purification of Fish (trout) MPR Protein and pH Optimum

Binding of Chicken MPR 46 to PM-Sepharose

Identification of Fish MPR 46

Identification of *Unio* MPR proteins

Partial Amino acid Sequencing of *Unio* MPR 300

Discussion

Chapter III: 60-108

Introduction

Materials

Instruments

Chemicals

Kits used for molecular biological work

Enzymes for molecular biological work

Plasmid DNA vectors

DNA standards

Reagents used for molecular biological work

Methods

Total RNA Isolation Using QIAgen Kit

Important points to be considered while handling RN

Total RNA Isolation from Cultured Cells

Total RNA Isolation
3.2.2 Quantitation of Nucleic acids (RNA / DNA)
3.2.3 Denaturing Agarose Gel Electrophoresis for RNA
3.2.4 Agarose Gel Electrophoresis for DNA
3.2.5 Gel Documentation
3.2.6 Primer Designing
3.2.7 Reverse Transcription or First Strand cDNA Synthesis (Pharmacia kit)
3.2.7a First-Strand cDNA Synthesis
3.2.8 PCR Amplification (QIAGEN Hot Star Taq DNA Polymerase Kit)
3.2.8a PCR Reaction
3.2.9 Gel Purification of PCR Product (QIAquick Gel Extraction Kit)
3.2.10 TA Cloning (Invitrogen)
3.2.10a Ligation
3.2.10b Transformation
3.2.11 Plasmid DNA Isolation (QIAprep plasmid DNA Isolation kit)
3.2.12 Midi preparation of Plasmid DNA (QIAGen method)
3.2.12a Procedure for Plasmid DNA Isolation
3.2.13 Digesting DNA with Restriction Endonucleases
3.2.14 2’ 3’ Dideoxy NTP Dye Terminator Cycle Sequencing (Applied Biosystem DNA Sequencing kit)
3.2.15 Random Primer Labeling (Redivue random primer labeling kit)
3.2.16 Northern Blotting (RNA Transfer)/ Southern Blotting (DNA Transfer)
3.2.17 Hybridization
3.2.18 Long Term Storage of Bacterial Stocks
3.2.19 Titering of Phage Library
3.2.19a Preparation of the Agar Plates (10cm/14cm)
3.2.19b Preparation of Host Cell (LE392) Culture
3.2.19c Dilution of the Phage Library
3.2.19d Phage Infection
3.2.19e Plating of Bacteria
3.2.20 Screening of the Phage Library
3.2.20a Plating of phage infected bacteria
3.2.20b Plaque Lifting
3.2.20c Colony Hybridization
3.2.20d Identification of Positive Plaques and Phage Elution
3.2.20e Secondary and Tertiary Screening
3.2.20f Amplification of the Phage
3.2.20 Phage DNA Isolation using QIAGEN Kit
3.2.21a Preparation of Liquid lysate
3.2.21b Lambda Phage DNA Isolation Using QIAGEN kit Protocol
3.2.21c DNA Precipitation

3.3 Results
3.3.1 Isolation of Total RNA from Cultured Fish Cells and HepG2 Cells
3.3.2 Degenerate Primers for RT-PCR
3.3.4 Amplification of cDNA Fragments Derived from Human MPR's by RT-PCR
3.3.4 Amplification of cDNA Fragments Derived from Fish MPR's by RT-PCR
3.3.4a RT-PCR for MPR 46
3.3.4b RT-PCR for MPR 300
3.3.5 Amplification of cDNA Fragments Derived from Fish by RT, Followed by PCR with Hot Star Taq DNA Polymerase
3.3.6 Northern Blotting
3.3.7 Screening of the Fish cDNA Library Constructed in XZAPII Phage DNA for MPR 300
3.3.8 Sub Cloning of 2.3 kb Insert into pGEM 3Zf (+/-) Vector
3.3.9 Characterization of cDNA and Deduced Amino Acid Sequence of Fish MPR 300

3.4 Discussion

Summary 109-110

Bibliography 111-122