LIST OF FIGURES

Fig. 1 Process flow sheet of the automobile spare part manufacturing unit and the treatment plant.

Fig. 2 Oven-dried sludge.

Fig. 3 Test set-up for Unconfined Compressive Strength (UCS) measurement.

Fig. 4 Test set-up for Flexural Strength (FS) measurement.

Fig. 5 Effect of initial sludge quantity on the strength characteristics of Mix series “A”.

Fig. 6 Effect of initial sludge quantity on the strength characteristics of Mix series “B”.

Fig. 7 Effect of initial sludge quantity on the strength characteristics of Mix series “C”.

Fig. 8 Effect of initial sludge quantity on the strength characteristics of Mix series “D”.

Fig. 9 Effect of initial sludge quantity on the TCLP leaching toxicity of Mix series “A”.

Fig. 10 Effect of initial sludge quantity on the TCLP leaching toxicity of Mix series “B”.

Fig. 11 Effect of initial sludge quantity on the TCLP leaching toxicity of Mix series “C”.

Fig. 12 Effect of initial sludge quantity on the TCLP leaching toxicity of Mix series “D”.

Fig. 13 Effect of initial sludge quantity on the % retention of metals in Mix series “A”.
Fig. 14 Effect of initial sludge quantity on the % retention of metals in Mix series “B”

Fig. 15 Effect of initial sludge quantity on the % retention of metals in Mix series “C”

Fig. 16 Effect of initial sludge quantity on the % retention of metals in Mix series “D”

Fig. 17 Effect of Water/Cement ratio on the strength characteristics of Mix series “E”.

Fig. 18 Effect of Water/Cement ratio on the strength characteristics of Mix series “F”.

Fig. 19 Effect of Water/Cement ratio on the strength characteristics of Mix series “G”.

Fig. 20 Effect of Water/Cement ratio on the strength characteristics of Mix series “H”.

Fig. 21 Effect of Water/Cement ratio on the TCLP leaching toxicity of Mix series “E”.

Fig. 22 Effect of Water/Cement ratio on the TCLP leaching toxicity of Mix series “F”.

Fig. 23 Effect of Water/Cement ratio on the TCLP leaching toxicity of Mix series “G”.

Fig. 24 Effect of Water/Cement ratio on the TCLP leaching toxicity of Mix series “H”.

Fig. 25 Effect of Water/Cement ratio on the % retention of metals in Mix series “E”.

Fig. 26 Effect of Water/Cement ratio on the % retention of metals in Mix series “F”.

Fig. 27 Effect of Water/Cement ratio on the % retention of metals in Mix series “G”.
Fig. 28 Effect of Water/Cement ratio on the retention of metals in Mix series “H”.

Fig. 29 Effect of curing time on the Unconfined Compressive Strength (UCS) of Mix series “A”.

Fig. 30 Effect of curing time on the Flexural Strength (FS) of Mix series “A”.

Fig. 31 Effect of curing time on the Unconfined Compressive Strength (UCS) of Mix series “B”.

Fig. 32 Effect of curing time on the Flexural Strength (FS) of Mix series “B”.

Fig. 33 Effect of curing time on the Unconfined Compressive Strength (UCS) of Mix series “C”.

Fig. 34 Effect of curing time on the Flexural Strength (FS) of Mix series “C”.

Fig. 35 Effect of curing time on the Unconfined Compressive Strength (UCS) of Mix series “D”.

Fig. 36 Effect of curing time on the Flexural Strength (FS) of Mix series “D”.

Fig. 37 Effect of curing time on the TCLP leaching toxicity of Cu for different mixes.

Fig. 38 Effect of curing time on the TCLP leaching toxicity of Cr for different mixes.

Fig. 39 Effect of curing time on the TCLP leaching toxicity of Pb for different mixes.

Fig. 40 Effect of curing time on the TCLP leaching toxicity of Cd for different mixes.

Fig. 41 Effect of curing time on the TCLP leaching toxicity of Fe for different mixes.
Fig. 42 Effect of curing time on the TCLP leaching toxicity of Ni for different mixes.

Fig. 43 Effect of curing time on the TCLP leaching toxicity of Zn for different mixes.

Fig. 44 Effect of curing time on the % retention of Cu in different mixes.

Fig. 45 Effect of curing time on the % retention of Cr in different mixes.

Fig. 46 Effect of curing time on the % retention of Pb in different mixes.

Fig. 47 Effect of curing time on the % retention of Cd in different mixes.

Fig. 48 Effect of curing time on the % retention of Fe in different mixes.

Fig. 49 Effect of curing time on the % retention of Ni in different mixes.

Fig. 50 Effect of polymer modification of the cement matrix on the % retention of metals in Mix series “I”.

Fig. 51 Scanning Electron Micrograph of sample A-0 (control).

Fig. 52 Scanning Electron Micrograph of sample A-4.

Fig. 53 Scanning Electron Micrograph of sample A-9.

Fig. 54 X-ray diffractogram of sludge sample (control).

Fig. 55 X-ray diffractogram of sample A-4.

Fig. 56 X-ray diffractogram of sample A-9.