SECTION - A
Chapter - II
CHAPTER-II

DIELECTRIC CONSTANTS OF SOME MISCIBLE AQUEOUS-ORGANIC SOLVENT MIXTURES

The dielectric constants of some aqueous-organic solvent mixtures have been analysed by an equation analogous to Grunberg and Nissan equation. The hydration numbers are found out at the maxima and minima of the plots of $\Delta \varepsilon$ versus x_2. The extent of hydration of organic solvents is discussed in the light of structure of the solvents. It is shown that the equation can be very well applied to aqueous-organic solvent mixtures. An interaction parameter d is defined to fit the dielectric constant data of the mixtures which bears a linear relationship with ε_2.
2.1 INTRODUCTION

The dielectric constants of mixtures of polar-polar liquids is of great importance in physical and pharmaceutical chemistry. These liquids are associated to some extent. The probabilities of the occurrence of A-A, B-B and A-B interactions are expected when two polar liquids A and B are mixed together. The extent of hydration of water-miscible organic liquids can be determined from density, viscosity and dielectric constants of these mixtures.

Hasted1 has reviewed the dielectric properties of aqueous-organic solvent mixtures and aqueous solutions of non-electrolytes. Certain more modern mixture formulas for polar spheres in non-polar media2-6 almost give rise to identical results for the volume fraction. Schott7 has found out the deviations of experimental dielectric constant using

$$\log \varepsilon_{12} = x_1 \log \varepsilon_1 + x_2 \log \varepsilon_2 \quad \ldots \ldots \quad 2.1$$

analogous to Kendall equation8 for viscosity, where x_i and ε_i stand for mole fraction and dielectric constants and the subscripts 1, 2 and 12 stand for water, organic liquids and their mixtures respectively. This equation is analogous to that of Arrhenius9 equation for viscosity and therefore it has a theoretical basis, Grunberg and Nissan10 modified equation (1) with an interaction parameter d for viscosity as

$$\log \eta_{12} = x_1 \log \eta_1 + x_2 \log \eta_2 + x_1 x_2 d \quad \ldots \ldots \quad 2.2$$

The parameter d can be both positive and negative and is a measure of the strength of interaction between two liquids in the solution11.

The interaction as shown above is not taken care of in equation (1). Survey of literature revels that the dielectric constant data is not analysed according to Grunberg and Nissan equation. Therefore in this chapter an attempt is made to analyse the dielectric constant data of some aqueous-organic solvent mixtures by a method analogous to that of Grunberg and Nissan at 25°C.
2.2 MATERIALS AND METHODS

The dielectric constant data at 25°C are taken from literature. The data are shown graphically in Figures 1 and 2 as a function of mole fraction of the organic compound. The data are presented in Table 1.

The plots indicate that the dielectric constant of water gradually decreases with addition of organic liquid. The decrease is not linear but exponential. The nature of the curves indicates the existence of interaction between the two liquids. Hence an interaction parameter should explain the non-linearity of the plots. Basing on this analogy the Grunberg-Nissan equation (2) for viscosity can be extended to dielectric constants of solvent mixtures as

\[
\log \epsilon_{12} = x_1 \log \epsilon_1 + x_2 \log \epsilon_2 + dx_1x_2
\]

Equation (2) is used to calculate the dielectric constants of the mixtures at various compositions. Deviations in dielectric constants are defined as

\[
\Delta \epsilon = \epsilon_{12} \text{calc} - \epsilon_{12} \text{exp}
\]

while percent relative deviations in the dielectric constants are calculated as

Relative deviation in \(\epsilon_{12} = 100 \times \frac{\Delta \epsilon}{\epsilon_{12} \text{exp}} \)

2.3 RESULTS AND DISCUSSION

The mean of the deviations calculated by equation (4) and (5) is given in Table 2. The low values of the percent relative deviation clearly show that equation (3) can be universally applied to aqueous-organic solvent mixtures, which are thoroughly miscible.

The interaction parameter \(d \) for different organic solvents is given in Table 2. The empirical parameter \(d \) is calculated for each composition by the equation.

\[
d = \frac{\log(\epsilon_{12} \text{cal} / \epsilon_{12} \text{exp})}{x_1x_2}
\]
The mean of the d-values was taken for further calculation. It provides a useful measure of the interactions between pairs of miscible liquids reaching a maximum or minimum at the composition of strongest interaction. It is negative for alcohols, acetone and dioxan containing one or no hydroxy groups (group-I) and positive for glycerol and ethylene glycol (group-II) containing polyhydroxy groups. This confirms the views of Fort and Moore11. The plot of d versus ε_2 is shown in Figure 3.

Which shows that d bears a linear relationship with ε_2 empirically as

$$d = 0.03\varepsilon_2 - 1.07$$

The empirical parameter d takes into account the interactions A-A, B-B and A-B. The negative values of d for group I solvents indicate that the interaction A-B dominates over A-A and B-B and for group II solvents the reverse is true. Because of the greater interactions between A and B, the water structure gets disrupted by the addition of organic solvents, which results in the negative value of d.

The deviations of the experimental dielectric constants are plotted in Figure 4 and 5 as function of x_2.

The figures reveal that there exists maxima in cases of methanol, ethanol, 1-propanol, 2-propanol, t-butanol, ethylene glycol, glycerol and minima in case of acetone and dioxan in the solvent mixtures. In case of methanol, ethanol and glycerol there exists two maxima in the aqueous solvent mixtures. Compositions corresponding to these maxima and minima determine the extent of hydration and thus the hydration number n_h can be calculated from

$$n_h = \frac{x_1}{x_2}$$

The values of n_h are set out in Table 2. In case of methanol, ethanol and glycerol, there are two hydration numbers: one for the water-rich region and the other for the organic solvent-rich region. It is well known that association of alcohols is governed by the association equilibria:

$$(\text{ROH})_n + \text{ROH} \rightleftharpoons (\text{ROH})_{n+1}$$
Organic liquids interact with water through hydrogen bonds as OH...O. Because of the association equilibrium (Equation-9) there exists two maxima in case of methanol, ethanol and glycerol due to two values of \(n_h \). The water-alcohol mixtures are treated as heterogeneous mixtures. The pure alcohol is conceived as containing very long molecular chains which can penetrate into three dimensional network structure of water and the water structure gets disrupted at higher concentrations of organic solvents.

Thus one can get the value of \(d \) from equation (7) using the known value of the dielectric constant \(\varepsilon_2 \) of the organic component and utilise this value in equation (3) to calculate the dielectric constants of water-organic solvent mixtures at various compositions.
TABLE 2.1: DIELECTRIC CONSTANT DATA OF AQUEOUS - ORGANIC SOLVENT MIXTURES AT 25°C.

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\varepsilon_{12}) (exp)</th>
<th>(\varepsilon_{12}) (cal)</th>
<th>(\Delta \varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9411</td>
<td>0.059</td>
<td>74.1</td>
<td>74.2</td>
<td>0.11</td>
</tr>
<tr>
<td>80</td>
<td>0.8767</td>
<td>0.123</td>
<td>69.2</td>
<td>70.0</td>
<td>0.78</td>
</tr>
<tr>
<td>70</td>
<td>0.8057</td>
<td>0.194</td>
<td>64.3</td>
<td>65.6</td>
<td>1.30</td>
</tr>
<tr>
<td>60</td>
<td>0.7272</td>
<td>0.273</td>
<td>59.6</td>
<td>61.1</td>
<td>1.48</td>
</tr>
<tr>
<td>50</td>
<td>0.6399</td>
<td>0.360</td>
<td>54.9</td>
<td>56.4</td>
<td>1.51</td>
</tr>
<tr>
<td>40</td>
<td>0.5422</td>
<td>0.458</td>
<td>50.1</td>
<td>51.6</td>
<td>1.51</td>
</tr>
<tr>
<td>30</td>
<td>0.4323</td>
<td>0.568</td>
<td>45.0</td>
<td>46.7</td>
<td>1.69</td>
</tr>
<tr>
<td>20</td>
<td>0.3076</td>
<td>0.692</td>
<td>40.1</td>
<td>41.7</td>
<td>1.58</td>
</tr>
<tr>
<td>10</td>
<td>0.1645</td>
<td>0.835</td>
<td>35.7</td>
<td>36.5</td>
<td>0.84</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>31.5</td>
<td>31.5</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Contd...

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\varepsilon_{12}) (exp)</th>
<th>(\varepsilon_{12}) (cal)</th>
<th>(\Delta \varepsilon)</th>
</tr>
</thead>
</table>

Contd...
Water + 1-Propanol

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>x_1</th>
<th>x_2</th>
<th>ε_{12} (exp)</th>
<th>ε_{12} (cal)</th>
<th>$\Delta \varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9677</td>
<td>0.032</td>
<td>71.8</td>
<td>74.9</td>
<td>3.14</td>
</tr>
<tr>
<td>80</td>
<td>0.9303</td>
<td>0.070</td>
<td>64.9</td>
<td>71.2</td>
<td>6.34</td>
</tr>
<tr>
<td>70</td>
<td>0.8860</td>
<td>0.114</td>
<td>57.7</td>
<td>67.1</td>
<td>9.36</td>
</tr>
<tr>
<td>60</td>
<td>0.8333</td>
<td>0.167</td>
<td>50.3</td>
<td>62.4</td>
<td>12.12</td>
</tr>
<tr>
<td>50</td>
<td>0.7691</td>
<td>0.231</td>
<td>43.0</td>
<td>57.2</td>
<td>14.20</td>
</tr>
<tr>
<td>40</td>
<td>0.6695</td>
<td>0.311</td>
<td>36.4</td>
<td>47.0</td>
<td>10.65</td>
</tr>
<tr>
<td>30</td>
<td>0.5881</td>
<td>0.412</td>
<td>30.7</td>
<td>44.7</td>
<td>14.02</td>
</tr>
<tr>
<td>20</td>
<td>0.4544</td>
<td>0.546</td>
<td>26.1</td>
<td>37.3</td>
<td>11.19</td>
</tr>
<tr>
<td>10</td>
<td>0.2702</td>
<td>0.730</td>
<td>22.7</td>
<td>29.0</td>
<td>6.32</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>20.1</td>
<td>20.1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Water + 2-Propanol

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>x_1</th>
<th>x_2</th>
<th>ε_{12} (exp)</th>
<th>ε_{12} (cal)</th>
<th>$\Delta \varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9677</td>
<td>0.032</td>
<td>71.4</td>
<td>74.7</td>
<td>3.27</td>
</tr>
<tr>
<td>80</td>
<td>0.9303</td>
<td>0.070</td>
<td>64.1</td>
<td>70.7</td>
<td>6.59</td>
</tr>
<tr>
<td>70</td>
<td>0.8860</td>
<td>0.114</td>
<td>56.9</td>
<td>66.2</td>
<td>9.32</td>
</tr>
<tr>
<td>60</td>
<td>0.8333</td>
<td>0.167</td>
<td>49.7</td>
<td>61.3</td>
<td>11.58</td>
</tr>
<tr>
<td>50</td>
<td>0.7691</td>
<td>0.231</td>
<td>42.5</td>
<td>55.8</td>
<td>13.26</td>
</tr>
<tr>
<td>40</td>
<td>0.6695</td>
<td>0.311</td>
<td>35.3</td>
<td>45.5</td>
<td>10.16</td>
</tr>
<tr>
<td>30</td>
<td>0.5881</td>
<td>0.412</td>
<td>28.7</td>
<td>42.7</td>
<td>14.03</td>
</tr>
<tr>
<td>20</td>
<td>0.4544</td>
<td>0.546</td>
<td>23.7</td>
<td>35.1</td>
<td>11.41</td>
</tr>
<tr>
<td>10</td>
<td>0.2702</td>
<td>0.730</td>
<td>20.3</td>
<td>26.8</td>
<td>6.48</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>18.0</td>
<td>18.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Contd...
water + t-butanol

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>x_1</th>
<th>x_2</th>
<th>ε_{12} (exp)</th>
<th>ε_{12} (cal)</th>
<th>$\Delta \varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.0000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9735</td>
<td>0.027</td>
<td>70.0</td>
<td>74.1</td>
<td>4.12</td>
</tr>
<tr>
<td>80</td>
<td>0.9424</td>
<td>0.058</td>
<td>61.3</td>
<td>69.5</td>
<td>8.21</td>
</tr>
<tr>
<td>70</td>
<td>0.9053</td>
<td>0.095</td>
<td>52.6</td>
<td>64.4</td>
<td>11.77</td>
</tr>
<tr>
<td>60</td>
<td>0.8602</td>
<td>0.140</td>
<td>43.9</td>
<td>58.6</td>
<td>14.74</td>
</tr>
<tr>
<td>50</td>
<td>0.8038</td>
<td>0.196</td>
<td>35.4</td>
<td>52.2</td>
<td>16.79</td>
</tr>
<tr>
<td>40</td>
<td>0.7320</td>
<td>0.268</td>
<td>27.9</td>
<td>45.0</td>
<td>17.08</td>
</tr>
<tr>
<td>30</td>
<td>0.6371</td>
<td>0.363</td>
<td>21.9</td>
<td>37.0</td>
<td>15.07</td>
</tr>
<tr>
<td>20</td>
<td>0.5060</td>
<td>0.494</td>
<td>16.5</td>
<td>28.2</td>
<td>11.69</td>
</tr>
<tr>
<td>10</td>
<td>0.3128</td>
<td>0.687</td>
<td>12.4</td>
<td>18.9</td>
<td>6.50</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>9.9</td>
<td>9.9</td>
<td>0.00</td>
</tr>
</tbody>
</table>

water + ethylene glycol

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>x_1</th>
<th>x_2</th>
<th>ε_{12} (exp)</th>
<th>ε_{12} (cal)</th>
<th>$\Delta \varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.0000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9688</td>
<td>0.031</td>
<td>75.6</td>
<td>76.5</td>
<td>0.93</td>
</tr>
<tr>
<td>80</td>
<td>0.9324</td>
<td>0.068</td>
<td>72.8</td>
<td>74.5</td>
<td>1.73</td>
</tr>
<tr>
<td>70</td>
<td>0.8894</td>
<td>0.111</td>
<td>69.8</td>
<td>72.2</td>
<td>2.42</td>
</tr>
<tr>
<td>60</td>
<td>0.8379</td>
<td>0.162</td>
<td>66.6</td>
<td>69.6</td>
<td>2.95</td>
</tr>
<tr>
<td>50</td>
<td>0.7751</td>
<td>0.225</td>
<td>63.2</td>
<td>66.4</td>
<td>3.23</td>
</tr>
<tr>
<td>40</td>
<td>0.6968</td>
<td>0.303</td>
<td>59.4</td>
<td>62.7</td>
<td>3.34</td>
</tr>
<tr>
<td>30</td>
<td>0.5963</td>
<td>0.404</td>
<td>54.7</td>
<td>58.3</td>
<td>3.59</td>
</tr>
<tr>
<td>20</td>
<td>0.4629</td>
<td>0.537</td>
<td>49.3</td>
<td>52.9</td>
<td>3.58</td>
</tr>
<tr>
<td>10</td>
<td>0.2769</td>
<td>0.723</td>
<td>43.7</td>
<td>46.2</td>
<td>2.46</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>37.7</td>
<td>37.7</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Contd...
water + glycerol

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\varepsilon_{12}) (exp)</th>
<th>(\varepsilon_{12}) (cal)</th>
<th>(\Delta \varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9787</td>
<td>0.021</td>
<td>75.5</td>
<td>77.2</td>
<td>1.69</td>
</tr>
<tr>
<td>80</td>
<td>0.9534</td>
<td>0.047</td>
<td>72.9</td>
<td>75.9</td>
<td>3.00</td>
</tr>
<tr>
<td>70</td>
<td>0.9227</td>
<td>0.077</td>
<td>70.0</td>
<td>74.4</td>
<td>4.35</td>
</tr>
<tr>
<td>60</td>
<td>0.8847</td>
<td>0.115</td>
<td>67.1</td>
<td>72.5</td>
<td>5.39</td>
</tr>
<tr>
<td>50</td>
<td>0.8365</td>
<td>0.164</td>
<td>64.0</td>
<td>70.2</td>
<td>6.19</td>
</tr>
<tr>
<td>40</td>
<td>0.7732</td>
<td>0.227</td>
<td>60.0</td>
<td>67.3</td>
<td>7.27</td>
</tr>
<tr>
<td>30</td>
<td>0.6867</td>
<td>0.313</td>
<td>55.6</td>
<td>63.5</td>
<td>7.89</td>
</tr>
<tr>
<td>20</td>
<td>0.5611</td>
<td>0.439</td>
<td>50.6</td>
<td>58.4</td>
<td>7.77</td>
</tr>
<tr>
<td>10</td>
<td>0.3624</td>
<td>0.638</td>
<td>45.5</td>
<td>51.1</td>
<td>5.61</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>40.1</td>
<td>40.1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

water + acetone

<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\varepsilon_{12}) (exp)</th>
<th>(\varepsilon_{12}) (cal)</th>
<th>(\Delta \varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9667</td>
<td>0.033</td>
<td>73.0</td>
<td>74.7</td>
<td>1.71</td>
</tr>
<tr>
<td>80</td>
<td>0.9280</td>
<td>0.072</td>
<td>67.0</td>
<td>70.7</td>
<td>3.74</td>
</tr>
<tr>
<td>70</td>
<td>0.8827</td>
<td>0.117</td>
<td>61.0</td>
<td>66.4</td>
<td>5.36</td>
</tr>
<tr>
<td>60</td>
<td>0.8286</td>
<td>0.171</td>
<td>54.6</td>
<td>61.5</td>
<td>6.88</td>
</tr>
<tr>
<td>50</td>
<td>0.7633</td>
<td>0.237</td>
<td>48.2</td>
<td>56.1</td>
<td>7.87</td>
</tr>
<tr>
<td>40</td>
<td>0.6825</td>
<td>0.318</td>
<td>41.8</td>
<td>50.0</td>
<td>8.23</td>
</tr>
<tr>
<td>30</td>
<td>0.5801</td>
<td>0.420</td>
<td>35.7</td>
<td>43.3</td>
<td>7.60</td>
</tr>
<tr>
<td>20</td>
<td>0.4463</td>
<td>0.554</td>
<td>29.6</td>
<td>35.9</td>
<td>6.25</td>
</tr>
<tr>
<td>10</td>
<td>0.2637</td>
<td>0.736</td>
<td>24.0</td>
<td>27.7</td>
<td>3.71</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>19.1</td>
<td>19.1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Contd...
<table>
<thead>
<tr>
<th>% by wt. of water</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(\varepsilon_{12}) (exp)</th>
<th>(\varepsilon_{12}) (cal)</th>
<th>(\Delta\varepsilon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.0000</td>
<td>0.000</td>
<td>78.3</td>
<td>78.3</td>
<td>0.00</td>
</tr>
<tr>
<td>90</td>
<td>0.9778</td>
<td>0.022</td>
<td>69.7</td>
<td>72.3</td>
<td>2.57</td>
</tr>
<tr>
<td>80</td>
<td>0.9514</td>
<td>0.049</td>
<td>60.8</td>
<td>65.7</td>
<td>4.88</td>
</tr>
<tr>
<td>70</td>
<td>0.9195</td>
<td>0.081</td>
<td>51.9</td>
<td>58.5</td>
<td>6.61</td>
</tr>
<tr>
<td>60</td>
<td>0.8801</td>
<td>0.120</td>
<td>43.0</td>
<td>50.7</td>
<td>7.76</td>
</tr>
<tr>
<td>50</td>
<td>0.8303</td>
<td>0.170</td>
<td>34.3</td>
<td>42.4</td>
<td>8.11</td>
</tr>
<tr>
<td>40</td>
<td>0.7654</td>
<td>0.235</td>
<td>25.9</td>
<td>33.5</td>
<td>7.65</td>
</tr>
<tr>
<td>30</td>
<td>0.6771</td>
<td>0.323</td>
<td>17.7</td>
<td>24.3</td>
<td>6.65</td>
</tr>
<tr>
<td>20</td>
<td>0.5502</td>
<td>0.450</td>
<td>10.7</td>
<td>15.4</td>
<td>4.67</td>
</tr>
<tr>
<td>10</td>
<td>0.3522</td>
<td>0.648</td>
<td>5.6</td>
<td>7.5</td>
<td>1.91</td>
</tr>
<tr>
<td>00</td>
<td>0.0000</td>
<td>1.000</td>
<td>2.1</td>
<td>2.1</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 2.2: Physical Parameters from Dielectric Constants of Some Water Miscible Organic Solvents at 25°C

<table>
<thead>
<tr>
<th>Organic Solvent</th>
<th>ε_2</th>
<th>d</th>
<th>x_2</th>
<th>n_h</th>
<th>% mean</th>
<th>R.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>31.5</td>
<td>-0.044</td>
<td>0.19,0.69</td>
<td>4.26,0.45</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Ethanol</td>
<td>24.3</td>
<td>-0.230</td>
<td>0.28,0.48</td>
<td>2.57,1.08</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>1-Propanol</td>
<td>20.1</td>
<td>-0.525</td>
<td>0.31</td>
<td>2.23</td>
<td>4.58</td>
<td></td>
</tr>
<tr>
<td>2-Propanol</td>
<td>18.0</td>
<td>-0.540</td>
<td>0.42</td>
<td>1.38</td>
<td>4.85</td>
<td></td>
</tr>
<tr>
<td>t-butanol</td>
<td>9.9</td>
<td>-0.816</td>
<td>0.20</td>
<td>4.00</td>
<td>6.22</td>
<td></td>
</tr>
<tr>
<td>Glycerol</td>
<td>40.1</td>
<td>0.150</td>
<td>0.11,0.23</td>
<td>8.10,3.30</td>
<td>6.29</td>
<td></td>
</tr>
<tr>
<td>Ethylene glycol</td>
<td>37.7</td>
<td>0.600</td>
<td>0.40</td>
<td>1.50</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>19.1</td>
<td>-0.450</td>
<td>0.42</td>
<td>1.30</td>
<td>12.33</td>
<td></td>
</tr>
<tr>
<td>Dioxan</td>
<td>2.1</td>
<td>-1.050</td>
<td>0.20</td>
<td>4.00</td>
<td>3.70</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 2.1 - ε_{exp} as a function of x_2.

Fig. 2.2 - ε_{exp} as a function of x_2.
Fig. 2.3 - d as a function of ε_2.
Fig. 2.4 - $\Delta \varepsilon$ as a function of x_2.

Fig. 2.5 - $\Delta \varepsilon$ as a function of x_2.
REFERENCES

