<table>
<thead>
<tr>
<th>FIGURE</th>
<th>CAPTIONS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1(a)</td>
<td>A schematic picture of the analytic structure of the amplitude in the $x = \cos \theta$ plane. The solid circles represent poles.</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 1(b)</td>
<td>Conformal mapping of the x plane onto the Z plane as proposed in Ref. 31 for pp scattering. The solid circle represents images of the poles.</td>
<td>24</td>
</tr>
<tr>
<td>Fig. 2(a)</td>
<td>Spurious cuts in the x plane, shown by the dotted contours, as introduced by the conformal mappings adopted by Dumrais and Chemev (Ref. 40) and Dumrais, Chemev and Zlatanov (Ref. 41).</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 2(b)</td>
<td>Parabolic conformal mapping of the x plane onto the Z_α plane used in Ref. 40. The dotted lines represent the images of the spurious cuts.</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 2(c)</td>
<td>Elliptic conformal mapping of the x plane onto the Z_α plane used in Ref. 41. The dotted lines represent the images of the spurious cuts.</td>
<td>27</td>
</tr>
<tr>
<td>Fig. 3(a)</td>
<td>Analytic structure in the s plane used by Deo and Mahapatra (Ref. 42). The dotted contour is the spurious cut introduced by the conformal mapping used by the authors.</td>
<td>32</td>
</tr>
</tbody>
</table>
Fig. 3(b) Conformal mapping of the right-hand cut onto the \mathbb{Z}_+ plane used in Ref. 42. The dotted line represents the image of the spurious cut

Fig. 3(c) Conformal mapping of the left-hand cut onto the \mathbb{Z}_+ plane used in Ref. 42. The dotted line represents the image of the spurious cut...

Fig. 4 Conformal mapping of the x plane onto the \mathbb{Z}_+ plane used in Ref. 47. The wavy lines represent the spurious cuts in the mapped plane...

Fig. 5 Conformal mapping of the x plane onto the \mathbb{Z}_c plane used in Refs. 29, 33 and 38. The dotted contour is the spurious cut...

Fig. 6(a) Conformal mapping of the x plane onto the \mathbb{Z}_b plane which does not introduce any spurious cut...

Fig. 6(b) Conformal mapping of the x plane onto the χ plane for physical values of energy and for $(\ln s)^n$ type of asymptotic behaviour of the slope parameter...

Fig. 7 Fit to the forward slope-parameter data for pp scattering at high energy...

Fig. 8 Scaling of the available differential cross-section-ratio data for pp scattering at high energies. The dashed line represents fit to the data by the proposed series for scaling...
function with first three terms as described in Chap. V. The dotted line represents fit to the data with first five terms.

Fig. 9 Fit to the forward-slope parameter data for $\bar{p}p$ scattering at high energies...

Fig. 10 Scaling of the available differential cross-section-ratio data for $\bar{p}p$ scattering at high energies. The dashed line represents fit to the data by the proposed series for scaling function with first four terms as described in Chap. V.

Fig. 11 Fit to the forward-slope-parameter data for Λ^+p scattering at high energies...

Fig. 12 Scaling of the available differential cross-section-ratio data for Λ^+p scattering at high energies...

Fig. 13 Fit to the forward-slope-parameter data for Λ^-p scattering at high energies...

Fig. 14 Scaling of the available differential cross-section-ratio data for Λ^-p scattering at high energies...

Fig. 15 Fit to the forward-slope-parameter data for K^+p scattering at high energies. The dashed line is the fit obtained using the data for $p_{Lab} \gg 50$ GeV/C only...
Fig. 16(a) Scaling of the available data on differential cross-section-ratio for K^+p scattering for smaller $|t|$ values and with $P_{Lab} > 3$ GeV/C ... 71

Fig. 16(b) Scaling of the available data on differential cross-section-ratio for K^+p scattering in the larger $|t|$ region with $P_{Lab} > 50$ GeV/C corresponding to the solid-line fit of the slope-parameter data of Fig. 15 ... 72

Fig. 16(c) Scaling of the available data on differential cross-section-ratio for K^+p scattering in the larger $|t|$ region with $P_{Lab} > 50$ GeV/C corresponding to the dashed line fit of Fig. 15 ... 73

Fig. 17 Fit to the forward-slope-parameter data for K^-p scattering at high energies ... 75

Fig. 18 Scaling of the available data on the differential cross-section-ratio for K^-p scattering at high energies. The dashed line represents fit to the data by the proposed series for scaling function with first four terms as described in Chap. V ... 76

Fig. 19 Fit to the slope-parameter data at high energies for $\Lambda^-p \rightarrow \Lambda^0n$ as a function of s ... 115

Fig. 20(a) Scaling of the available differential cross-section-ratio data at high energies in and outside the peak region for $\Lambda^-p \rightarrow \Lambda^0n$... 116
Fig. 20(b) Scaling of the available differential cross-section-ratio data at high energies outside the peak region for $\Lambda^p \rightarrow \Lambda^0 n$ for larger values of $|t|$... 117
Fig. 21 Fit to the slope-parameter data at high energies for $\Lambda^p \rightarrow \eta n$ as a function of s ... 120
Fig. 22 Scaling of the available high energy data on differential cross-section-ratio for $\Lambda^p \rightarrow \eta n$... 121
Fig. 23 Fit to the slope-parameter data at high energies for $K^p \rightarrow \bar{K}^0 n$ as a function of s ... 123
Fig. 24 Scaling of the available high energy data on differential cross-section-ratio for $K^p \rightarrow \bar{K}^0 n$... 124
Fig. 25 Fit to the slope-parameter data at high energies for $K^+ n \rightarrow K^0 p$ as a function of s ... 126
Fig. 26 Scaling of the available high energy data on differential cross-section-ratio for $K^+ n \rightarrow K^0 p$... 127
Fig. 27 Fit to the slope-parameter data at high energies for $K^+ p \rightarrow K^0 \Lambda^{++}$ as a function of s ... 129
Fig. 28 Scaling of the available high energy data on differential cross-section-ratio for $K^+ p \rightarrow K^0 \Lambda^{++}$... 130
Fig. 29 Fit to the slope-parameter data at high energies for $K^- n \rightarrow \bar{K}^0 \Lambda^-$ as a function of s ... 132
Fig. 30 Scaling of the available high energy data on differential cross-section-ratio for $K^- n \rightarrow \bar{K}^0 \Lambda^-$... 133
Fig. 31	Fit to the average of the world data on the slope parameter for Λ^+p scattering for $s > 3$ GeV2	... 153		
Fig. 32	Scaling of the available data on the differential cross-section-ratio for Λ^+p scattering for $P_{\text{Lab}} \gg$ 3 GeV/C	... 154		
Fig. 33	Scaling of the available data on the differential cross-section-ratio for Λ^+p scattering for $P_{\text{Lab}} \gg$ 70 GeV/C. The solid line is the scaling curve used for prediction of $f(s,t)$ at higher energies as described in Chap. IV. The dashed line represents fit to the data by the proposed series for scaling function with first five terms as described in Chap. V	... 155		
Fig. 34	Extrapolation of the slope-parameter onto higher energies for Λ^+p scattering	... 156		
Fig. 35	Prediction of the differential-cross-section ratio as a function of $	t	$ for Λ^+p scattering for $P_{\text{Lab}} = 500, 1000, 1500$ and 2000 GeV/C	... 157
Fig. 36	Prediction of the differential-cross-section ratio as a function of $	t	$ for Λ^+p scattering for $P_{\text{Lab}} = 4000, 6000, 8000$ and 10000 GeV/C	... 158
Fig. 37	Fit to the average of the world data on the slope parameter for Λ^+p scattering for $s > 3$ GeV2	... 161		
Fig. 38 Scaling of the available data on the differential-cross-section ratio for Λ^-p scattering for $P_{\text{Lab}} \gg 6$ GeV/C ...

Fig. 39 Scaling of the available data on the differential cross-section ratio for Λ^-p scattering for $P_{\text{Lab}} \gg 50$ GeV/C. The solid line is the scaling curve used for prediction of $f(s,t)$ at higher energies as described in Chap. IV. The dashed line represents fit to the data by the proposed series for scaling function with first five terms as described in Chap. V ...

Fig. 40 Extrapolation of the slope-parameter onto higher energies for Λ^-p scattering ...

Fig. 41 Prediction of the differential-cross-section ratio as a function of $|t|$ for Λ^-p scattering for $P_{\text{Lab}} = 500, 1000, 1500$ and 2000 GeV/C ...

Fig. 42 Prediction of the differential-cross-section ratio as a function of $|t|$ for Λ^-p scattering for $P_{\text{Lab}} = 4000, 6000, 8000$ and 10000 GeV/C ...

Fig. 43 Fit to the average of the world data on the slope-parameter for K^+p scattering for $s > 3$ GeV2. The dotted line is the fit for the average of the high energy data with $P_{\text{Lab}} \gg 50$ GeV/C ...

Fig. 44 Scaling of the available data on differential-cross-section ratio for K^+p scattering for $P_{\text{Lab}} \gg 50$ GeV/C corresponding to the solid line-fit of Fig. 43 ...

...
Scaling of the available data on the differential-cross-section ratio for K^+p scattering for $P_{Lab} \gg 50$ GeV/C corresponding to the dotted-line-fit of Fig. 43. The solid line is the scaling curve used for prediction of $f(s,t)$ at higher energies as described in Chap. IV. The dashed line represents fit to the data by the proposed series for scaling function with first five terms as described in Chap. V ... 171

Extrapolation of the slope-parameter onto higher energies for K^+p scattering ... 172

Prediction of the differential-cross-section ratio as a function of $|t|$ for K^+p scattering for $P_{Lab} = 500, 1000, 1500$ and 2000 GeV/C ... 173

Prediction of the differential-cross-section ratio as a function of $|t|$ for K^+p scattering for $P_{Lab} = 4000, 6000, 8000$ and 10000 GeV/C ... 174

Fit to the available data on slope parameters at high energies for $\Lambda^-p \rightarrow \Lambda^0n$... 178

Scaling of the high-energy data on the differential-cross-section ratio for $\Lambda^-p \rightarrow \Lambda^0n$. The solid line is the scaling curve used for prediction of $f(s,t)$ at higher energies as described in Chap. IV. The dashed line represents fit to the data by the proposed series for scaling function with first four terms
as described in Chap. V. For $\chi < 2.7$
the solid line is the same as the dashed one ... 179

Fig. 51 Extrapolation of the slope parameter onto
higher energies for $\pi^- p \rightarrow \Lambda^0 n$... 180

Fig. 52 Prediction of $f(s,t)$ as a function of $|t|$ for
$\pi^- p \rightarrow \Lambda^0 n$ for $p_{Lab} = 400, 600, 800$ and
1000 GeV/C ... 181

Fig. 53 Scaling of the high-energy data on the dif-
ferential-cross-section ratio for $\pi^- p \rightarrow \eta n$.
The solid line is the scaling curve used for
prediction of $f(s,t)$ at higher energies as
described in Chap. IV. The dashed line represents
fit to the data by the proposed series for
scaling function with first six terms as
described in Chap. V. ... 183

Fig. 54 Extrapolation of the slope parameter onto
higher energies for $\pi^- p \rightarrow \eta n$... 184

Fig. 55 Prediction of $f(s,t)$ as a function of $|t|$ for
$\pi^- p \rightarrow \eta n$ for $p_{Lab} = 400, 600, 800$ and
1000 GeV/C. ... 185
Table I: Information on the asymptotic behaviour of slope parameter and scaling of cross-section-ratio data for different diffraction scattering processes. Here $|t|_{\text{max}}$ denotes the maximum range of $|t|$ of the available data for $P_{\text{Lab}} \geq 3$ GeV/C which lie on the scaling curve.

Table II: Numerical values of the coefficients in the proposed series of the scaling function determined by fitting the data in the $f(s,t)$ vs χ plot as described in Chap. V. χ_{max} denotes the range of the fit and $F(\chi_{\text{max}})$ denotes the value of $f(s,t)$ at $\chi = \chi_{\text{max}}$.
The following papers directly related to this thesis have been prepared and submitted to various journals. Out of these the first two papers have been already published in Physical Review D.

1. "Convergent polynomial expansion and scaling in diffraction scattering III. Conformal mapping without spurious cut and scaling for elastic diffraction scattering processes", M.K. Parida and N. Girl - Phys. Rev. D 21, 2528 (1980); This paper contains most of the contents of chapter II.

2. "Convergent polynomial expansion and scaling in inelastic charge-exchange scattering processes", M.K. Parida and N. Girl - Phys. Rev. D 21, 2548 (1980); This paper contains most of the contents of chapter III.

The following two papers, although not directly related to this thesis, have been produced during the course of the Ph.D. work.