LIST OF FIGURE

Figure 1.1: Type of Wireless Communication 2
Figure 1.2: Ad-hoc network 5
Figure 1.3: Wireless sensor network 6
Figure 1.4: Client WMNs 8
Figure 1.5: Infrastructure/back bone WMNs 9
Figure 1.6: Hybrid WMNs 10
Figure 2.1: the relationship between the routing protocol and metric 23
Figure 3.1: Multipoint relays 32
Figure 3.2: RREQ Message Broadcasting 35
Figure 3.3: RREP Message Processing 36
Figure 3.4: AODV route discovery: route request (left) and route reply (right) 37
Figure 3.5: Throughput (in Kbps) versus Different Types of Application Traffic 43
Figure 3.6: Average End to End Delay versus Different Types of Application Traffic 44
Figure 3.7: Average End to End Delay versus Different Types of Application Traffic 44
Figure 3.8: Average Throughput versus Traffic Loads for OSLR, AODV and HWMP 45
Figure 3.9: Average end to end delay (s) versus Traffic Loads (packets/s) 46
Figure 3.10: Packet Loss (%) Versus Transmission rate (Mbps) 47
Figure 3.11: Average RTT (ms) versus Packet Size (bytes) 47
Figure 4.1: Schematic of Self organizing Scheme 56
Figure 4.2: Scalable model for Mesh Router 57
Figure 4.3: The architecture for Self configuration procedure 63
Figure 4.4: Average Throughput versus Traffic Loads 67
Figure 4.5: Average end to end delay versus Traffic Loads 68
Figure 4.6: Average Throughput versus Number of Nodes 69
Figure 4.7: Average Throughput versus Number of nodes 70
Figure 4.8: Average throughput versus number of sources 71
Figure 4.9: Average end to end delay versus number of sources 72
Figure 4.10: Average Throughput versus Traffic Loads 73
Figure 4.11: Average end to end delay versus Traffic Loads 74
Figure 4.12: Average Throughput vs. Number of Nodes 75
Figure 4.13: Average Throughput versus Number of nodes

Figure 5.1: Hop-count

Figure 5.2: Per-Hop Round Trip Time Metric

Figure 5.3: ETX metric estimation for node A

Figure 5.4: Expected Transmission Time (ETT)

Figure 5.5: Weighted Cumulative Expected Transmission Time (WCETT)

Figure 5.6: Metric of Interference and Channel Switching (MIC)

Figure 5.7: Average Throughput vs. Number of Nodes

Figure 5.8: Average End-to-End Delay versus Number of nodes

Figure 5.9: Channel Utilization versus Number of nodes

Figure 5.10: Average throughput versus number of flows

Figure 5.11: Average end to end delay versus number of flows

Figure 5.12: Maximum Channel Utilization versus number of flows

Figure 6.1: Count to infinity problem

Figure 6.2: Hold down, solution to Slow Convergence problem

Figure 6.3: Split Horizon, solution to Slow Convergence problem

Figure 6.4: Poison Reverse, other solution to Slow Convergence problem

Figure 6.5: Poison Reverse along with triggered Update

Figure 6.6: The OSPF Hierarchy

Figure 6.7: Hierarchy in OSPF

Figure 6.8: Process of electing DR and BDR

Figure 6.9: Qualnet5.2 Simulation Scenario of 10 nodes

Figure 6.10: Qualnet5.2 Simulation Scenario of 20 nodes

Figure 6.11: Qualnet5.2 Simulation Scenario of 30 nodes

Figure 6.12: Total Unicast Messages Received against node density

Figure 6.13: Data Received against node density

Figure 6.14: Average End to End Delay against node density

Figure 6.15: Throughput against node density

Figure 6.16: Link Utilisation against node density
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Simulation Parameters</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Application Type and Packet Size</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Shows the parameters used in this simulation test</td>
<td>66</td>
</tr>
<tr>
<td>5.1</td>
<td>Classification of routing metrics</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Characteristics of Airtime cost constants [IEEE 802.11, 2006]</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Important Routing metric characteristics</td>
<td>98</td>
</tr>
<tr>
<td>5.4</td>
<td>The summary of the simulation parameters</td>
<td>101</td>
</tr>
</tbody>
</table>