SUMMARY AND CONCLUSIONS
CHAPTER 7

SUMMARY & CONCLUSION

From the present study it is evident that the \(IL-6 \) -174 “C” allele and \(SDF-1 \) 801 “A” allele seems to confer some amount of protection against diabetes but not against DFU, while the \(TNF-\alpha \) -308 “A” allele (but not -238 SNP) seems to confer genetic susceptibility towards both conditions. At baseline, none of these alleles seem to control serum cytokine levels. However, in the presence of diabetes, both \(IL-6 \) -174G/C and \(TNF-\alpha \) -308 G/A SNPs seem to control their respective serum cytokine levels. Interestingly these SNPs apart from having an effect on inflammation also seem to influence various risk factors of DFU including glycemic control, serum lipid profile, kidney function, vascular health and obesity. In these aspects, the present study gains importance since the effect of these SNPs on intermediate phenotype (serum levels) under the given disease phenotype (DFU) along with major risk factors of DFU was evaluated in a cohort of ethnically high-risk individuals. These polymorphisms also had an effect on disease severity and microbial invasion of DFU. Overall the \(IL-6 \), \(TNF-\alpha \) \(SDF-1 \) and \(HSP-70 \) SNPs apart from mediating and regulating serum cytokine levels, also plays an important role in influencing various risk factors of DFU.