Chapter 3 Symmetry Identities for Generalized Hermite-based Apostol-Euler and Apostol-Genocchi Polynomials
3.1 Introduction

The Kampé de Fériet generalization of the Hermite polynomials for 2-variable (refer Bell, (1934) and Dattoli et al. (1999)) subjected as

\[H_n(x, y) = n! \sum_{r=0}^{\lfloor \frac{n}{2} \rfloor} \frac{y^r x^{n-2r}}{r!(n-2r)!}, \tag{3.1.1} \]

These polynomials are in common specified by the generating function

\[e^{xt+y^2} = \sum_{n=0}^{\infty} H_n(x, y) \frac{t^n}{n!}, \tag{3.1.2} \]

and precipitates to the ordinary Hermite polynomials \(H_n(x) \) (Andrews, 1985) when \(y = -1 \) and \(x \) is reset by \(2x \).

The ordinary Bernoulli polynomials \(B_n(x) \), the ordinary Euler polynomials \(E_n(x) \) and the ordinary Genocchi polynomials \(G_n(x) \), along with their close generalizations \(B_n^{(\alpha)}(x) \), \(E_n^{(\alpha)}(x) \) and \(G_n^{(\alpha)}(x) \) of order \(\alpha \) (real or complex) are defined by means of the following generating functions (for details see: Andrews (1985), Apostol (1951), Khan (2015, p.597-614), Pathan and Khan (2014, p.113-136, 2015, p.679-695, 2016, p.913-928, 2014, p.92-109, 2015, p.53-70, 2015, p.153-170)):

\[\left(\frac{t}{e^t - 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x) \frac{t^n}{n!}, \quad (|t| < 2\pi; 1^\alpha = 1). \tag{3.1.3} \]

\[\left(\frac{2}{e^t + 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x) \frac{t^n}{n!}, \quad (|t| < \pi; 1^\alpha = 1). \tag{3.1.4} \]

and

\[\left(\frac{2t}{e^t + 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} G_{n}^{(\alpha)}(x) \frac{t^n}{n!}, \quad (|t| < \pi; 1^\alpha = 1). \tag{3.1.5} \]
so that
\[
B_n(x) = B_n^{(1)}(x); E_n(x) = E_n^{(1)}(x); G_n(x) = G_n^{(1)}(x), \quad n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}. \quad (3.1.6)
\]
In particular, Luo and Srivastava (2006, p.290-302, 2005, p.631-642 2011), Luo (2009, p.2193-2208, 2009, p.377-391, 2009, p.336-346, 2009, p.1-9, 2009, p.113-125, 2011, p.291-310) established the generalized Apostol-Bernoulli polynomials \(B_n^{(\alpha)}(x; \lambda) \), the generalized Apostol-Euler polynomials \(E_n^{(\alpha)}(x; \lambda) \) and the generalized Apostol-Genocchi polynomials \(G_n^{(\alpha)}(x; \lambda) \) each of order \(\alpha \in \mathbb{C} \) defined as follows:

Definition 3.1.1. The generalized Apostol-Bernoulli polynomials \(B_n^{(\alpha)}(x) \) (of order \(\alpha \)) are defined in terms of the generating function
\[
\left(\frac{t}{\lambda e^t - 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} B_n^{(\alpha)}(x; \lambda) \frac{t^n}{n!}; \quad |t| < 2\pi, i\lambda = 1; |t| < |\log \lambda|, i\lambda \neq 1; 1^\alpha = 1.
\]
(3.1.7)

with
\[
B_n^{(\alpha)}(x) = B_n^{(\alpha)}(x; 1),
\]
and
\[
B_n^{(\alpha)}(\lambda) = B_n^{(\alpha)}(0; \lambda),
\]
(3.1.8)

where we denote \(B_n^{(\alpha)}(\lambda) \) by the so called Apostol-Bernoulli numbers (of order \(\alpha \)).

Definition 3.1.2. The generalized Apostol-Euler polynomials \(E_n^{(\alpha)}(x) \) (of order \(\alpha \)) are defined in terms of the generating function
\[
\left(\frac{2}{\lambda e^t + 1} \right)^\alpha e^{xt} = \sum_{n=0}^{\infty} E_n^{(\alpha)}(x; \lambda) \frac{t^n}{n!}; \quad |t| < |\log(-\lambda)| < \pi, 1^\alpha = 1.
\]
(3.1.9)

with
\[
E_n^{(\alpha)}(x) = E_n^{(\alpha)}(x; 1),
\]
and
\[
E_n^{(\alpha)}(\lambda) = E_n^{(\alpha)}(0; \lambda),
\]
(3.1.10)

where we denote \(E_n^{(\alpha)}(\lambda) \) by the so called Apostol-Euler numbers (of order \(\alpha \)).

Definition 3.1.3. The generalized Apostol-Genocchi polynomials \(G_n^{(\alpha)}(x) \) (of order \(\alpha \)) are defined in terms of the generating function
\[
\left(\frac{2t}{\lambda e^t + 1} \right)^\alpha = \sum_{n=0}^{\infty} G_n^{(\alpha)}(x; \lambda) \frac{t^n}{n!}; \quad |t| < |\log(-\lambda)| < \pi, 1^\alpha = 1,
\]
(3.1.11)
with
\[G_n^{(\alpha)}(x) = G_n^{(\alpha)}(x; 1), \quad G_n^{(\alpha)}(\lambda) = G_n^{(\alpha)}(0; \lambda), \quad (n \in \mathbb{N}). \tag{3.1.12} \]

where we denote \(G_n^{(\alpha)}(\lambda) \) by the so called Apostol-Genocchi numbers (of order \(\alpha \)).

Very recently, Pathan and Khan (2015) studied a new family of generalized Hermite-Apostol-Bernoulli, Hermite-Apostol-Euler and Hermite-Apostol-Genocchi polynomials of order \(\alpha \) in the following form:

Definition 3.1.4. For arbitrary parameter \(\alpha \) (real or complex) and for \(a, c \in \mathbb{R}^+ \), the generalized Hermite-Apostol-Bernoulli polynomials \(H_{\alpha}^{[m-1,\alpha]}(x; a, c, \lambda) \) with \(m \in \mathbb{N} \) and \(\lambda \in \mathbb{C} \) are defined in a suitable neighborhood of \(t = 0 \) with \(|t \log(a)| < |\log(-\lambda)| \), in terms of the following generating function:

\[t^{m\alpha}[A(\lambda, a; t)]^{\alpha} e^{xt+y^2} = \sum_{n=0}^\infty H_{\alpha}^{[m-1,\alpha]}(x, y; a, c, \lambda) \frac{t^n}{n!}, \tag{3.1.13} \]

where
\[A(\lambda, a; t) = \left(\lambda a^t - \sum_{h=0}^{m-1} \frac{(t \log(a))^h}{h!} \right)^{-1}. \tag{3.1.14} \]

It can be easily seen that if we set \(y = 0 \) in (3.1.13), we reach at a recent result of Tremblay et al. (2012, p.3, (1.8)) including the generalized Apostol-Bernoulli polynomials

\[t^{m\alpha}[A(\lambda, a; t)]^{\alpha} e^{xt} = \sum_{n=0}^\infty B_{\alpha}^{[m-1,\alpha]}(x, y; a, c, \lambda) \frac{t^n}{n!}, \tag{3.1.15} \]

For \(c = e \) in (3.1.13) gives

\[t^{m\alpha}[A(\lambda, a; t)]^{\alpha} e^{xt+y^2} = \sum_{n=0}^\infty H_{\alpha}^{[m-1,\alpha]}(x, y; a, c, \lambda) \frac{t^n}{n!}, \tag{3.1.16} \]

Moreover by substituting \(y = 0, \ m = 1, \ a = c = e \) in (3.1.13), we reach at the following result

\[\left(\frac{t}{\lambda e^t - 1} \right)^{\alpha} e^{xt} = \sum_{n=0}^\infty B_{\alpha}^{(0,\alpha)}(x; e, e, \lambda) \frac{t^n}{n!}, \quad (|t| < 2\pi, \ 1^\alpha = 1), \tag{3.1.17} \]

This is nothing but the generating function for the generalized Apostol-Bernoulli polynomials of order \(\alpha \). Therefore, we have

\[B_{\alpha}^{(0,\alpha)}(x; e, e, \lambda) = B_{\alpha}^{(\alpha)}(x; \lambda). \tag{3.1.18} \]
Definition 3.1.5. For arbitrary parameter \(\alpha\) (real or complex) and \(a, c \in \mathbb{R}^+\), the generalized Apostol-Hermite-Euler polynomials \(\mathcal{H}_{n}^{[m-1,\alpha]}(x, y; a, c, \lambda)\) with \(m \in \mathbb{N}\) and \(\lambda \in \mathbb{C}\) are defined in a suitable neighborhood of \(t = 0\) with \(|t \log a| < |\log(-\lambda)|\) in terms of the generating function

\[
2^{m\alpha}[B(\lambda, a; t)]^\alpha e^{xt+yt^2} = \sum_{n=0}^{\infty} \mathcal{H}_{n}^{[m-1,\alpha]}(x, y; a, c, \lambda) \frac{t^n}{n!},
\]

(3.1.19)

where

\[
B(\lambda, a; t) = \left(\lambda a^t + \sum_{h=0}^{m-1} \frac{(t \log a)^h}{h!}\right)^{-1}.
\]

(3.1.20)

It can be easily seen that if we set \(y = 0\) in (3.1.19), we reach at a recent result of Tremblay et al. (2012, p.3(2.1)) involving the generalized Apostol-Euler polynomials

\[
2^{m\alpha}[B(\lambda, a; t)]^\alpha e^{xt} = \sum_{n=0}^{\infty} E_{n}^{[m-1,\alpha]}(x; a, c, \lambda) \frac{t^n}{n!},
\]

(3.1.21)

For \(c = e\) in (3.1.19) gives

\[
2^{m\alpha}[B(\lambda, a; t)]^\alpha e^{xt+yt^2} = \sum_{n=0}^{\infty} \mathcal{H}_{n}^{[m-1,\alpha]}(x; a, e, \lambda) \frac{t^n}{n!},
\]

(3.1.22)

Moreover if we substitute \(y = 0, m = 1, a = c = e\) in (3.1.19), we reach at the following result

\[
\left(\frac{2}{\lambda e^t + 1}\right)^\alpha e^{xt} = \sum_{n=0}^{\infty} E_{n}^{[0,\alpha]}(x; e, e, \lambda) \frac{t^n}{n!} (|t| < \pi, 1^\alpha = 1).
\]

(3.1.23)

This is nothing but the generating function for the generalized Apostol-Euler polynomials of order \(\alpha\). Therefore, we have

\[
E_{n}^{[0,\alpha]}(x; e, e, \lambda) = E_{n}^{[\alpha]}(x; \lambda).
\]

(3.1.24)

Definition 3.1.6. For arbitrary parameter \(\alpha\) (real or complex) and \(a, c \in \mathbb{R}^+\), the generalized Hermite-Apostol-Genocchi polynomials \(\mathcal{H}_{n}^{[m-1,\alpha]}(x, y; a, c, \lambda)\) with \(m \in \mathbb{N}\) and \(\lambda \in \mathbb{C}\) are defined in a suitable neighborhood of \(t = 0\) with \(|t \log a| < |\log(-\lambda)|\) in terms of the generating function

\[
2^{m\alpha}\lambda^{m\alpha}[B(\lambda, a; t)]^\alpha e^{xt+y^2t^2} = \sum_{n=0}^{\infty} \mathcal{H}_{n}^{[m-1,\alpha]}(x, y; a, c, \lambda) \frac{t^n}{n!},
\]

(3.1.25)
where $B(\lambda, a; t)$ is given by equation (3.1.20). It can be easily seen that if we substitute $y = 0$ in (3.1.25), we reach at a recent result of Tremblay et al. (2012, p.5(2.4)]) including the generalized Apostol-Genocchi polynomials.

$$2^{m\alpha} t^{m\alpha}[B(\lambda, a; t)]^\alpha e^{xt} = \sum_{n=0}^\infty G_n^{[m-1,\alpha]}(x, a, c, \lambda) \frac{t^n}{n!}, \quad (3.1.26)$$

For $c = e$ in (3.1.25) gives

$$2^{m\alpha} t^{m\alpha}[B(\lambda, a; t)]^\alpha e^{xt+yt^2} = \sum_{n=0}^\infty H_n^{[m-1,\alpha]}(x, y; a, e, \lambda) \frac{t^n}{n!}, \quad (3.1.27)$$

Obviously if we substitute $y = 0$, $m = 1$, $a = c = e$ in (3.1.25), we reach at the following result

$$\left(\frac{2t}{xe^t+1}\right)^\alpha e^{xt} = \sum_{n=0}^\infty G_n^{[0,\alpha]}(x; e, e, \lambda) \frac{t^n}{n!}, \quad (|t| < \pi, 1^\alpha = 1), \quad (3.1.28)$$

This is nothing but the generating function for the generalized Apostol-Genocchi polynomials (of order α). Therefore, we have

$$G_n^{[0,\alpha]}(x; e, e, \lambda) = G_n^{[\alpha]}(x; \lambda). \quad (3.1.29)$$

3.2 Symmetry identities for generalized Hermite-Apostol-Euler polynomials

Here, we give general symmetry identities for the generalized Hermite-Apostol-Euler polynomials $H_n^{[\alpha,m-1]}(x, y; a, c, \lambda)$ by utilizing the generating functions (3.1.19) and (3.1.21), where α will be taken as an arbitrary real or complex parameter.

Theorem 3.2.1. For all integers $n \geq 0$, $a > 0$, $b > 0$, $c > 0$ with $a \neq b$ and $x, y \in \mathbb{R}$, the below identity holds true:

$$\sum_{k=0}^n \binom{n}{k} a^{n-k} b^k H_{n-k}^{[\alpha,m-1]}(bx, b^2y; c, \lambda) = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} H_{n-k}^{[\alpha,m-1]}(ax, a^2y; c, \lambda) \quad (3.2.1)$$
Proof. Proceeding with

\[A(t) := \left(\frac{2^{2m}}{\left(\lambda c^{at} + \sum_{h=0}^{m-1} \frac{(t \log a)^h}{h!} \right) \left(\lambda b^{bt} + \sum_{h=0}^{m-1} \frac{(t \log b)^h}{h!} \right)} \right)^\alpha e^{abt+a^2b^2y^2}. \tag{3.2.2} \]

One can see that the expression for \(A(t) \) is symmetric in \(a \) and \(b \) and we can expand \(A(t) \) in the form of two series to obtain

\[A(t) = \frac{1}{(ab)^\alpha m} \sum_{n=0}^{\infty} \sum_{k=0}^{n} HE_n^{[\alpha,m-1]}(bx,b^2y;c,\lambda) \frac{(at)^n}{n!} \sum_{k=0}^{\infty} HE_k^{[\alpha,m-1]}(ax,a^2y;c,\lambda) \frac{(bt)^k}{k!}, \tag{3.2.3} \]

In the similar pattern we can show that

\[A(t) := \frac{1}{(ab)^\alpha m} \sum_{n=0}^{\infty} HE_n^{[\alpha,m-1]}(ax,a^2y;c,\lambda) \frac{b^{n-k}}{(n-k)!} \sum_{k=0}^{\infty} HE_k^{[\alpha,m-1]}(bx,b^2y;c,\lambda) \frac{a^k}{k!} t^n. \tag{3.2.4} \]

Comparison of the coefficients of \(\frac{t^n}{n!} \) on the R.H.S. in the last two equations, gives us the desired result.

Remark 3.2.1. Adjustment \(\lambda = 1 \) and \(c = e \), the above result reduces to a recognized result of Pathan and Khan (2014. p.104, Theorem 4.1). Now by taking \(m = 1 \) in Theorem (3.2.1), we deduce the following result.

Corollary 3.2.1. Let \(a > 0, b > 0, c > 0 \) and \(n \geq 0 \), then the following identity holds true:

\[\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k HE_n^{(\alpha)}(bx,b^2y;c,\lambda) HE_k^{(\alpha)}(ax,a^2y;c,\lambda) \]

\[= \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} HE_{n-k}^{(\alpha)}(ax,a^2y;c,\lambda) HE_k^{(\alpha)}(bx,b^2y;c,\lambda). \tag{3.2.5} \]

Remark 3.2.2. On setting \(b = 1 \) in Theorem (3.2.1), the following corollary is deduced.
Corollary 3.2.2. For all integers \(a > 0, c > 0, n \geq 0 \) and \(m \geq 1 \), the below identity holds true:

\[
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} H E_{n-k}^{[a,m-1]}(x, y; c, \lambda) H E_k^{[a,m-1]}(ax, a^2 y; c, \lambda)
= \sum_{k=0}^{n} \binom{n}{k} b^{n-k} H E_{n-k}^{[a,m-1]}(ax, a^2 y; c, \lambda) H E_k^{[a,m-1]}(x, y; c, \lambda).
\]

(3.2.6)

Theorem 3.2.2. Let \(a, b, c > 0 \) with \(a \neq b \). Then for \(x, y \in \mathbb{R} \) and \(n \geq 0 \), the below identity holds true:

\[
\sum_{k=0}^{n} \binom{n}{k} a^{-n-k} b^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H E_{n-k}^{(a)} \left(bx + \frac{b}{a} i + j, b^2 z; c, \lambda \right) E_k^{(a)}(ay; c, \lambda)
= \sum_{k=0}^{n} \binom{n}{k} b^{-n-k} a^k \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} (-\lambda)^{i+j} H E_{n-k}^{(a)} \left(ax + \frac{a}{b} i + j, a^2 z; c, \lambda \right) E_k^{(a)}(by; c, \lambda).
\]

(3.2.7)

Proof. Let

\[
A(t) := \frac{(2a)^{(a)(\lambda c) + 1)}(\lambda c + 1)(\lambda c + 1)^{a+1}}{(\lambda c + 1)(\lambda c + 1)^{a+1}}.
\]

\[
A(t) = \left(\frac{2a}{\lambda c + 1} \right)^a c^{a b x t + a^2 b^2 z t^2} \left(\frac{\lambda c + 1}{\lambda c + 1} \right) \left(\frac{2b}{\lambda c + 1} \right)^b c^{a b y t} \sum_{j=0}^{b-1} (-\lambda)^j c^{a t j},
\]

(3.2.8)

\[
= \sum_{n=0}^{\infty} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H E_{n}^{(a)} \left(bx + \frac{b}{a} i + j, b^2 z; c, \lambda \right) \frac{(al)^n}{n!} \sum_{k=0}^{\infty} E_k^{(a)}(ay; c, \lambda) \left(\frac{bt}{k} \right)^k,
\]

(3.2.9)

Looking on the other side, we have

\[
A(t) := \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} a^{-n-k} b^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H E_{n-k}^{(a)} \left(ax + \frac{a}{b} i + j, a^2 z, c, \lambda \right) E_k^{(a)}(by; c, \lambda) \frac{t^n}{n!}.
\]

(3.2.10)

An identification of the coefficients of \(\frac{t^n}{n!} \) on R.H.S. of the last two equations, gives us the desired result.
Remark 3.2.3. $\lambda = 1$ and $c = e$ in the above result gives us a known result of Pathan and Khan (2014, p.105, Theorem 4.2).

Theorem 3.2.3. For a pair of integers a and b and all integers $n \geq 0$, the below identity holds true:

\[
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{(\alpha)} \left(bx + \frac{b}{a}i, b^2 z; c, \lambda \right) E_k^{(\alpha)} \left(ay + \frac{a}{b}j; c, \lambda \right)
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{(\alpha)} \left(ax + \frac{a}{b}i, a^2 z; c, \lambda \right) E_k^{(\alpha)} \left(by + \frac{b}{a}j; c, \lambda \right).
\]

(3.2.11)

Proof. The proof is alike to Theorem (3.2.2) but we need to put equation (3.2.8) as

\[
A(t) := \sum_{n=0}^{\infty} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_n^{(\alpha)} \left(bx + \frac{b}{a}i, b^2 z; c, \lambda \right) \frac{(at)^n}{n!} \sum_{k=0}^{\infty} E_k^{(\alpha)} \left(ay + \frac{a}{b}j; c, \lambda \right) \frac{(bt)^k}{k!}.
\]

(3.2.12)

On the other hand equation (3.2.8) can be proved equal to

\[
A(t) := \sum_{n=0}^{\infty} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_n^{(\alpha)} \left(ax + \frac{a}{b}i, a^2 z; c, \lambda \right) \frac{(bt)^n}{n!} \sum_{k=0}^{\infty} E_k^{(\alpha)} \left(by + \frac{b}{a}j; c, \lambda \right) \frac{(at)^k}{k!}.
\]

(3.2.13)

Some change of index and equation of the coefficients of t to zero in (3.2.12) and (3.2.13), gives us the desired result.

Remark 3.2.4. $\lambda = 1$ and $c = e$ in the above result gives us a known result of Pathan and Khan (2014, p.106, Theorem 4.3).

Remark 3.2.5. On setting $y = 0$ in Theorem (3.2.3), an immediately corollary is obtained.

Corollary 3.2.3. For integers $a > 0, b > 0, c > 0$ and $n \geq 0$, the below identity holds true:

\[
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{(\alpha)} \left(bx + \frac{b}{a}i, b^2 z; c, \lambda \right) E_k^{(\alpha)} \left(\frac{a}{b}j; c, \lambda \right)
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{(\alpha)} \left(ax + \frac{a}{b}i, a^2 z; c, \lambda \right) E_k^{(\alpha)} \left(\frac{b}{a}j; c, \lambda \right).
\]

(3.2.14)
Theorem 3.2.4. Let $a, b, c > 0$ with $a \neq b$. Then for $x, y \in \mathbb{R}$ and $n \geq 0$, the below identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^k E_{n-k}^{(a)}(ay; c, \lambda) \sum_{i=0}^{a-1} (-\lambda)^i H E_k^{(a)} \left(bx + \frac{b}{a} i, b^2 z; c, \lambda \right)
= \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k E_{n-k}^{(a)}(by; c, \lambda) \sum_{i=0}^{b-1} (-\lambda)^i H E_k^{(a)} \left(ax + \frac{a}{b} i, a^2 z; c, \lambda \right).
$$

(3.2.15)

Proof. Assume

$$
A(t) := \frac{(2a)^a (2b)^b (1 + \lambda (-1)^{a+1} a b t) e^{ab t + a^2 b^2 t^2}}{(\lambda e^{at} + 1)^a (\lambda e^{bt} + 1)^{a+1}}.
$$

(3.2.16)

$$
A(t) := \left(\frac{2a}{\lambda e^{at} + 1} \right)^a e^{ab t + a^2 b^2 t^2} \left(1 - \lambda (-\lambda e^{bt})^a \right) \left(\frac{2b}{\lambda e^{bt} + 1} \right)^a e^{ab t},
$$

$$
= \sum_{k=0}^{\infty} \sum_{i=0}^{a-1} (-\lambda)^i H E_k^{(a)} \left(bx + \frac{b}{a} i, b^2 z; c, \lambda \right) \frac{(at)^k}{k!} \sum_{n=0}^{\infty} E_n^{(a)}(ay; c, \lambda) \frac{(bt)^n}{(n)!}.
$$

(3.2.17)

On the other side

$$
A(t) := \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \sum_{i=0}^{b-1} (-\lambda)^i H E_k^{(a)} \left(ax + \frac{a}{b} i, a^2 z; c, \lambda \right) E_{n-k}^{(a)}(by; c, \lambda) \frac{t^n}{n!}.
$$

(3.2.18)

A simple comparison of the coefficients of $\frac{t^n}{n!}$ on the R.H.S. of the last two equations, yields us the desired result.

Theorem 3.2.5. Let $a, b, c > 0$ with $a \neq b$ and $m \geq 1$. Then for $x, y \in \mathbb{R}$ and $n \geq 0$, the below identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^k E_{n-k}^{(a,m)}(ay; c, \lambda) \sum_{i=0}^{a-1} (-\lambda)^i H E_k^{(a,m)} \left(bx + \frac{b}{a} i, b^2 z; c, \lambda \right)
= \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k E_{n-k}^{(a,m)}(by; c, \lambda) \sum_{i=0}^{b-1} (-\lambda)^i H E_k^{(a,m)} \left(ax + \frac{a}{b} i, a^2 z; c, \lambda \right).
$$

(3.2.19)

3.3 Symmetry identities for generalized Hermite-Apostol-Genocchi polynomials
In this section, we give general symmetry identities for the generalized Hermite-Apostol-Genocchi polynomials $H^{\alpha,m-1}_n(x,y; a,c, \lambda)$ by applying the generating functions (3.1.25) and (3.1.26). Throughout this section α will be taken as an arbitrary real or complex parameter.

Theorem 3.3.1. Let $a > 0, b > 0, c > 0$ with $a \neq b$ then for $x, y \in \mathbb{R}$ and $n \geq 0$, the following identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k H^{\alpha,m-1}_{n-k}(bx,b^2y;c,\lambda) H^{\alpha,m-1}_k(ax,a^2y;c,\lambda) = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} H^{\alpha,m-1}_{n-k}(ax,a^2y;c,\lambda) H^{\alpha,m-1}_k(bx,b^2y;c,\lambda) \quad (3.3.1)
$$

Proof. Start with

$$
A(t) := \left(\frac{2^m t^{2m}}{(\lambda e^{at} + \sum_{h=0}^{m-1} \frac{(t \log a)^h}{h!}) (\lambda e^{bt} + \sum_{h=0}^{m-1} \frac{(t \log b)^h}{h!})} \right)^{\alpha} e^{abt+a^2b^2y^2}. \quad (3.3.2)
$$

One can see that the expression for $A(t)$ is symmetric in a and b, so we can expand $A(t)$ into series in two ways

$$
A(t) := \frac{1}{(ab)^{\alpha m}} \sum_{n=0}^{\infty} H^{\alpha,m-1}_n(bx,b^2y;c,\lambda) \frac{(at)^n}{n!} \sum_{k=0}^{\infty} H^{\alpha,m-1}_k(ax,a^2y;c,\lambda) \frac{(bt)^k}{k!},
$$

$$
= \sum_{n=0}^{\infty} \sum_{k=0}^{n} H^{\alpha,m-1}_{n-k}(bx,b^2y;c,\lambda) \frac{a^{n-k}}{(n-k)!} H^{\alpha,m-1}_k(ax,a^2y;c,\lambda) \frac{b^k}{k!} t^n. \quad (3.3.3)
$$

With a similar pattern we can show that

$$
A(t) := \frac{1}{(ab)^{\alpha m}} \sum_{n=0}^{\infty} H^{\alpha,m-1}_n(ax,a^2y;c,\lambda) \frac{b^{n-k}}{(n-k)!} H^{\alpha,m-1}_k(bx,b^2y;c,\lambda) \frac{a^k}{k!} t^n. \quad (3.3.4)
$$

On comparison of the coefficients of $\frac{t^n}{n!}$ in the R.H.S. of the last two equations, we arrive at the desired result.

Remark 3.3.1. With $m = 1$ in Theorem 3.3.1, we immediately get the following result.
Corollary 3.3.1. Let $a > 0, b > 0$ and $c > 0$. Then for all integers $n \geq 0$, the following identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k H_{n-k}(b x, b^2 y; c, \lambda) = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} H_{n-k}(a x, a^2 y; c, \lambda). \tag{3.3.5}
$$

Remark 3.3.2. By adjusting $b = 1$ in Theorem 3.3.1, we get the following corollary.

Corollary 3.3.2. Let $a > 0$ and $b > 0$. Then for all integers $n \geq 0$ and $m \geq 1$, the below identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k H_{n-k}^{[\alpha, m-1]}(x, y; c, \lambda) = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} H_{n-k}^{[\alpha, m-1]}(a x, a^2 y; c, \lambda). \tag{3.3.6}
$$

Theorem 3.3.2. Let $a, b, c > 0$ and $a \neq b$. For $x, y \in \mathbb{R}$ and $n \geq 0$, the below identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{[\alpha]}(bx + \frac{b}{a} i + j, b^2 z; c, \lambda) G_{k}^{(\alpha)}(ay; c, \lambda) = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{[\alpha]}(ax + \frac{a}{b} i + j, a^2 z; c, \lambda) G_{k}^{(\alpha)}(by; c, \lambda). \tag{3.3.7}
$$

Proof. Let

$$
A(t) := \frac{(2at)^{\alpha}(2bt)^{\alpha}(\lambda c^{abt} + 1)^2 c^{ab(x+y)t} + a^2 b^2 z t^2}{(\lambda c^{at} + 1)^{\alpha+1}(\lambda c^{bt} + 1)^{\alpha+1}}.
$$

$$
A(t) := \left(\frac{2at}{\lambda c^{at} + 1}\right)^{\alpha} c^{abxt + a^2 b^2 z t^2} \left(\frac{\lambda c^{abt} + 1}{\lambda c^{bt} + 1}\right)^{\alpha} c^{abjt} \left(\frac{2bt}{\lambda c^{bt} + 1}\right)^{\alpha} c^{a^2zjt} \sum_{i=0}^{a-1} (-\lambda)^i c^{bti} \left(\frac{2bt}{\lambda c^{bt} + 1}\right)^{\alpha} c^{abjt} \sum_{j=0}^{b-1} (-\lambda)^j c^{a^2zjt}, \tag{3.3.8}
$$

$$
= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H_{n-k}^{[\alpha]}(ax + \frac{b}{a} i + j, b^2 z; c, \lambda) G_{k}^{(\alpha)}(ay; c, \lambda) \frac{t^n}{n!}. \tag{3.3.9}
$$
On the other hand

\[A(t) := \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^k \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} (-\lambda)^{i+j} H G_{n-k}^{(\alpha)} \left(bx + \frac{a}{b} i + j, a^2 z, c, \lambda \right) G_k^{(\alpha)} (by; c, \lambda) \right) \frac{t^n}{n!}. \]

(3.3.10)

A comparison of the coefficients of \(\frac{t^n}{n!} \) on the R.H.S. of the last two equations, gives us the desired result.

Theorem 3.3.3. Let \(a > 0 \) and \(b > 0 \). Then for all integers \(n \geq 0 \), the below identity holds true:

\[\sum_{k=0}^{n} \binom{n}{k} (a)^{n-k}(b)^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H G_n^{(\alpha)} \left(bx + \frac{a}{b} i + j, a^2 z, c, \lambda \right) G_k^{(\alpha)} (by; c, \lambda) = \sum_{k=0}^{n} \binom{n}{k} (b)^{n-k}(a)^k \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} (-\lambda)^{i+j} H G_n^{(\alpha)} \left(ax + \frac{a}{b} i, a^2 z, c, \lambda \right) G_k^{(\alpha)} (by + \frac{b}{a} j; c, \lambda). \]

(3.3.11)

Proof. The proof is alike Theorem 3.3.2 but equation (3.3.8) has to be written in the form

\[H(t) := \sum_{n=0}^{\infty} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H G_n^{(\alpha)} \left(bx + \frac{a}{b} i, a^2 z, c, \lambda \right) \frac{(at)^n}{n!} \sum_{k=0}^{\infty} G_k^{(\alpha)} (ay + \frac{a}{b} j; c, \lambda) \frac{(bt)^k}{k!}. \]

(3.3.12)

Also equation (3.3.8) can be depicted as

\[H(t) := \sum_{n=0}^{\infty} \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} (-\lambda)^{i+j} H G_n^{(\alpha)} \left(ax + \frac{a}{b} i, a^2 z, c, \lambda \right) \frac{(bt)^n}{n!} \sum_{k=0}^{\infty} G_k^{(\alpha)} (by + \frac{b}{a} j; c, \lambda) \frac{(at)^k}{k!}. \]

(3.3.13)

Next with change of index and coefficient comparison of \(\frac{t^n}{n!} \) in (3.3.12) and (3.3.13), we get the expected result.

Remark 3.3.3. By adjusting \(y = 0 \) in Theorem 3.3.3, we get the following corollary.

Corollary 3.3.3. Let \(a > 0, b > 0 \) and \(c > 0 \). Then for all integers \(n \geq 0 \), the below identity holds true:

\[\sum_{k=0}^{n} \binom{n}{k} (a)^{n-k}(b)^k \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} (-\lambda)^{i+j} H G_n^{(\alpha)} \left(bx + \frac{a}{b} i, a^2 z, c, \lambda \right) G_k^{(\alpha)} (\frac{b}{a} j; c, \lambda) \]

13
On comparing the coefficients of t

The other side gives

Proof. Let

$$A(t) := \frac{(2at)\alpha(2bt)\alpha(1 + \lambda(-1)^{a+1}e^{abt})e^{ab}(x+y)t + a^2b^2zt^2}{(\lambda e^{at} + 1)^{\alpha}(\lambda e^{bt} + 1)^{\alpha+1}}.$$ (3.3.16)

$$A(t) := \left(\frac{2at}{\lambda e^{at} + 1}\right)^{\alpha}e^{abxt + a^2b^2zt^2} \left(\frac{1 - \lambda(-b)^{a}}{\lambda e^{bt} + 1}\right)^{\alpha}e^{abt},$$

$$= \sum_{k=0}^{\infty} \sum_{i=0}^{a-1} (-\lambda)^{i} H_{k}^{(a)} \left(bx + \frac{b}{a}i, b^2z; c, \lambda\right) \left(\frac{a^{k}}{k!} \sum_{n=0}^{\infty} G_{n}^{(a)}(ay; c, \lambda) b^{n} \frac{t^{n+k}}{(n)!}\right) t^{n},$$ (3.3.17)

$$A(t) := \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array}\right) b^{n-k} a^{k} \sum_{i=0}^{a-1} (-\lambda)^{i} H_{k}^{(a)} \left(bx + \frac{b}{a}i, b^2z; c, \lambda\right) G_{n-k}^{(a)}(ay; c, \lambda) \right) \frac{t^{n}}{n!}.$$ (3.3.18)

The other side gives

$$A(t) := \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array}\right) a^{n-k} b^{k} \sum_{i=0}^{b-1} (-\lambda)^{i} H_{k}^{(a)} \left(ax + \frac{a}{b}i, a^2z; c, \lambda\right) G_{n-k}^{(a)}(by; c, \lambda) \right) \frac{t^{n}}{n!}.$$ (3.3.18)

On comparing the coefficients of $\frac{t^{n}}{n!}$ on the R.H.S. of the last two equations, we reach at the desired result.

In view of Theorems (3.3.1) to (3.3.5), we easily obtain the following general symmetry identity

\[\text{Theorem 3.3.4.} \text{ Let } a, b, c > 0 \text{ and } a \neq b. \text{ Then for } x, y \in \mathbb{R} \text{ and } n \geq 0, \text{ the below identity holds true:} \]

\[\sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array}\right) b^{n-k} a^{k} \sum_{i=0}^{a-1} (-\lambda)^{i} H_{k}^{(a)} \left(bx + \frac{b}{a}i, b^2z; c, \lambda\right) \right) G_{n-k}^{(a)}(ay; c, \lambda) \]

\[= \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array}\right) a^{n-k} b^{k} \sum_{i=0}^{b-1} (-\lambda)^{i} H_{k}^{(a)} \left(ax + \frac{a}{b}i, a^2z; c, \lambda\right) G_{n-k}^{(a)}(by; c, \lambda). \] (3.3.15)
Theorem 3.3.5. Let $a, b, c > 0$ with $a \neq b$. For $x, y \in \mathbb{R}$ and $n \geq 0$, the below identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} b^{n-k} a^{k} G_{n-k}^{(\alpha, m)} \left(a y; c, \lambda \right) \sum_{i=0}^{a-1} (-\lambda)^{i} G_{k}^{(\alpha, m)} \left(bx + \frac{b}{a} i, b^{2} z; c, \lambda \right)
$$

$$
= \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k} G_{n-k}^{(\alpha, m)} \left(by; c, \lambda \right) \sum_{i=0}^{b-1} (-\lambda)^{i} G_{k}^{(\alpha, m)} \left(ax + \frac{a}{b} i, a^{2} z; c, \lambda \right) \tag{3.3.19}
$$