TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>XV</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>XVIII</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>XIX</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>LOGISTICS INDUSTRY</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>TRANSPORTATION SERVICE PROCUREMENT</td>
<td>6</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Terminology</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Process Involved in Procurement of Transportation</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Types of auction procedures adopted</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>ENVIRONMENTAL SUSTAINABILITY ASPECTS IN</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>TRANSPORTATION SERVICE PROCUREMENT</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>OBJECTIVES AND CONTRIBUTION OF THE STUDY</td>
<td>14</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Objectives of the Research</td>
<td>14</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Contribution of the Research Work</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>ORGANIZATION OF THE THESIS</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>FRAMEWORK FOR REVIEW</td>
<td>20</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Framework for transportation service procurement</td>
<td>20</td>
</tr>
</tbody>
</table>
2.2.2 Framework for Environmental Sustainability and Non-Price Factors 23

2.3 TRANSPORTATION SERVICE PROCUREMENT LITERATURE 25

2.3.1 Type of the Problem 25
2.3.1.3 Collaboration 28

2.3.2 Problem objectives 34
2.3.2.1 Cost objective 34
2.3.2.2 Non price objective 35

2.3.3 Market Considered for Analysis 36
2.3.3.1 Contract market 36
2.3.3.2 Spot market 36

2.3.4 Nature of Demand 37
2.3.4.1 Constant demand 37
2.3.4.2 Variable demand 38
2.3.4.3 Stochastic demand 38

2.3.5 Lane bid type 38
2.3.5.1 Single bid 38
2.3.5.2 Combinatorial bids 39

2.3.6 Nature of work done 40
2.3.6.1 Conceptual developments 40
2.3.6.2 Mathematical Modeling Approaches 40
2.3.6.3 Simulation techniques 41
2.3.6.4 Case Study 43

2.4 LOGISTICS LITERATURE WITH ENVIRONMENTAL SUSTAINABILITY AND NONPRICE FACTORS 43

2.4.1 Studies on Environmental Sustainability Aspects 43
2.4.2 Studies considered non-price factors 49

2.5 MAJOR FINDINGS FROM THE REVIEW 49
2.5.1 Problem Type 49
3.2 ENVIRONMENTAL SUSTAINABILITY AND NONPRICE FACTORS CONSIDERED
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Environmental Sustainability Factors</td>
<td>66</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Non-Price Factors</td>
<td>68</td>
</tr>
<tr>
<td>3.5</td>
<td>SUMMARY</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>CAP MODELS WITH COST, ENVIRONMENTAL SUSTAINABILITY AND SERVICE LEVEL FACTORS</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>76</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Need of considering environmental sustainability aspects in CAP</td>
<td>76</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Influence of combinatorial bids in CAP Model</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>MODELLING OF CAP IN SINGLE AND MULTI-OBJECTIVE SETTING</td>
<td>78</td>
</tr>
<tr>
<td>4.2.1</td>
<td>CAP model with cost objective</td>
<td>78</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Assumptions</td>
<td>78</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Mathematical Model</td>
<td>79</td>
</tr>
<tr>
<td>4.2.2</td>
<td>CAP Model Including Environmental Sustainability and Service Level Factors</td>
<td>80</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Assumptions</td>
<td>80</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Mathematical Model</td>
<td>81</td>
</tr>
<tr>
<td>4.3</td>
<td>SUMMARY</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>COMPLETE SEARCH METHOD FOR SOLVING CAP WITH COST OBJECTIVE</td>
<td>84</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>PROPOSED COMPLETE SEARCH METHODOLOGY</td>
<td>84</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Algorithm</td>
<td>84</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Flow Chart</td>
<td>85</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.3</td>
<td>NUMERICAL ILLUSTRATION</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>SOLUTION TO TEST PROBLEMS</td>
<td>95</td>
</tr>
<tr>
<td>5.5</td>
<td>SUMMARY</td>
<td>98</td>
</tr>
</tbody>
</table>

6 HEURISTICS METHOD TO SOLVE CAP MODEL WITH COST OBJECTIVE 100

 6.1 INTRODUCTION 100

 6.2 HEURISTIC METHODOLOGY 100

 6.2.1 Algorithm 100

 6.2.2 Flow Chart 101

 6.3 SOLUTION TO TEST PROBLEMS 102

 6.4 SUMMARY 106

7 HEURISTICS METHOD TO SOLVE CAP MODEL WITH COST AND ENVIRONMENTAL SUSTAINABILITY OBJECTIVES 108

 7.1 INTRODUCTION 108

 7.2 PROPOSED METHODOLOGY 108

 7.3 COMPUTATIONAL RESULTS TO TEST PROBLEMS 109

 7.4 SUMMARY 113

8 RESULTS AND DISCUSSION 114

 8.1 INTRODUCTION 114

 8.2 UNDERSTANDING ROBUSTNESS OF WEIGHTAGE 114

 8.2.1 Equal weight scenario 114

 8.2.2 Reverse weight scenario 116

 8.3 MODELS PROPOSED 117

 8.4 PERFORMANCE OF METHODOLOGIES 118

 8.4.1 Sensitivity analysis 120

 8.5 ENVIRONMENTAL SUSTAINABILITY ASPECTS 122
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.6 SUMMARY</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>9 CONCLUSIONS AND SCOPE FOR FUTURE RESEARCH</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>9.1 CONCLUSION</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>9.2 LIMITATION AND FUTURE DIRECTIONS</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>134</td>
</tr>
</tbody>
</table>