REFERENCES


37. Joo, S, Yang, YS, Moon, WK & Kim, HC 2004, ‘Computer-aided
diagnosis of solid breast nodules: use of an artificial neural network
based on multiple sonographic features’, IEEE Transactions on
Medical Imaging, vol. 23, no. 10, pp. 1292-1300.

38. Katouzian, A, Sathyanarayana, S, Baseri, B, Konofagou, EE & Carlier,
SG 2008, ‘Challenges in atherosclerotic plaque characterization with
intravascular ultrasound (IVUS): from data collection to classification,
‘IEEE Transactions on Information Technology in Biomedicine,
vol. 12, no. 3, pp. 315-327.

through carotid artery’, International Journal of Engineering Business

40. Kyriacou, EC, Pattichis, C, Pattichis, M, Loizou, C, Christodoulou, C,
ultrasound image processing methods in the analysis of carotid plaque
morphology for the assessment of stroke risk’, IEEE Transactions on
Information Technology in Biomedicine, vol. 14, no. 4, pp. 1027-1038.

41. Larrabide, I, Blanco, PJ, Urquiza, SA, Dari, EA, Vénere, MJ, e Silva,
NDS & Feijóo, RA 2012, ‘He Mo Lab—Hemodynamics Modeling
Laboratory: An application for modeling the human cardiovascular
system’, Journal of Computers in biology and medicine, vol. 42,
no. 10, pp. 993-1004.

42. Larsson, M, Kremer, F, Claus, P, Kuznetsova, T, Brodin, LA & D'hoooge, J 2011, ‘Ultrasound-based radial and longitudinal strain
estimation of the carotid artery: a feasibility study’, IEEE transactions
on ultrasonics, ferroelectrics, and frequency control, vol. 58, no. 10,
pp. 2244-2251.

43. Le Floc, S, Ohayon, J, Tracqui, P, Finet, G, Gharib, AM, Maurice, RL
& Pettigrew, R 2009, ‘Vulnerable atherosclerotic plaque elasticity
reconstruction based on a segmentation-driven optimization procedure
using strain measurements: theoretical framework,’ IEEE Transactions
on Medical Imaging, vol. 28, no. 7, pp. 1126-1137.

computer model of a common carotid artery with a plaque’, Journal of
Medical Engineering & Physics, vol. 26, no. 10, pp. 823-840.


