TABLE OF CONTENT

<table>
<thead>
<tr>
<th>LIST OF FIGURES</th>
<th>xii-xiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xvi-xvii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1-3</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>4-7</td>
</tr>
<tr>
<td>CHAPTER 2: REVIEW OF LITERATURE</td>
<td>8-62</td>
</tr>
<tr>
<td>2.1. Kidney Stone Disease</td>
<td>8-11</td>
</tr>
<tr>
<td>2.1.1. Overview</td>
<td>8-9</td>
</tr>
<tr>
<td>2.1.2. History</td>
<td>10-10</td>
</tr>
<tr>
<td>2.1.3. Prevalence</td>
<td>10-11</td>
</tr>
<tr>
<td>2.2. Types of Stones</td>
<td>12-16</td>
</tr>
<tr>
<td>2.2.1 Calcium oxalate stones</td>
<td>12-13</td>
</tr>
<tr>
<td>2.2.2 Calcium phosphate stones</td>
<td>13-14</td>
</tr>
<tr>
<td>2.2.3 Struvite stones</td>
<td>14-14</td>
</tr>
<tr>
<td>2.2.4 Uric acid stones</td>
<td>14-15</td>
</tr>
<tr>
<td>2.2.5 Cystine stones</td>
<td>15-15</td>
</tr>
<tr>
<td>2.2.6 Other types</td>
<td>15-15</td>
</tr>
<tr>
<td>2.3. Etiology of Urolithiasis</td>
<td>17-20</td>
</tr>
<tr>
<td>2.3.1. Urinary factors</td>
<td>17-17</td>
</tr>
<tr>
<td>2.3.2. Preurinary risk factors</td>
<td>18-20</td>
</tr>
<tr>
<td>2.4. Pathophysiology of Urolithiasis</td>
<td>20-34</td>
</tr>
<tr>
<td>2.4.1. Supersaturation</td>
<td>20-21</td>
</tr>
<tr>
<td>2.4.2. Calcium Oxalate Crystallization</td>
<td>21-34</td>
</tr>
<tr>
<td>2.4.2.1 Nucleation</td>
<td>23-25</td>
</tr>
<tr>
<td>2.4.2.2 Crystal growth</td>
<td>25-27</td>
</tr>
<tr>
<td>2.4.2.3 Cell crystal interaction/ crystal adherence</td>
<td>27-29</td>
</tr>
<tr>
<td>2.4.2.4 Crystal aggregation</td>
<td>29-30</td>
</tr>
<tr>
<td>2.4.2.5 Crystal retention</td>
<td>30-31</td>
</tr>
<tr>
<td>2.5. Stone & Stone Matrix</td>
<td>35-37</td>
</tr>
</tbody>
</table>
2.6. Modulators of Crystal Formation and Retention
2.6.1. Low Molecular Weight Compounds
2.6.1.1. Pyrophosphate and Bisphosphonate
2.6.1.2. Citrate
2.6.2. High Molecular Weight Compounds
2.6.2.1. Glycosaminoglycans (GAGS)
2.6.2.2. Lipids
2.6.3. Proteins
2.6.3.1. Tamm-Horsfall Protein
2.6.3.2. Nephrocalcin (NC)
2.6.3.3. Inter-α-Inhibitor
2.6.3.4. Osteopontin
2.6.3.5. Urinary Prothrombin Fragment –1(UPTF-1)
2.6.3.6. Calgranulin (Calprotectin)
2.6.3.7. Albumin
2.6.3.8. Renal Lithostathine
2.6.3.9. CD44
2.6.3.10. Trefoil Factor1
2.6.3.11. Hyaluronic Acid (HA)
2.6.3.12. Annexin II
2.6.3.13. Matrix Gla Protein
2.6.3.14. Monocyte Chemo-attractant Protein-1 (MCP-1)

CHAPTER 3: MATERIALS AND METHODS
3.1. Human Renal Stone Collection
3.1.1. Protein extraction from human Calcium Oxalate Stones.
3.1.2. Separation of biomolecules on basis of molecular weight
3.1.3. Protein concentration (Lowry’s Method)
3.1.4. Calcium oxalate (CaOx) crystals Nucleation
3.1.5. Calcium oxalate (CaOx) crystal growth
3.1.6. Data Analysis

3.2. Cell Culture Studies
3.2.1. Cell culture 66-66
3.2.2. Oxalate-induced cell injury 66-67
3.2.3. Preparation of the protein samples 67-67
3.2.4. Lactate dehydrogenase (LDH) leakage assay 67-68
3.2.5. MTT colorimetric assay 69-70
3.2.6. SRB assay 70-71
3.2.7. AO/EtBr Staining to Detect Apoptosis 72-73
3.2.8. Statistical analysis 73-73

3.3. SDS-PAGE 74-76
3.3.1. 1D SDS-PAGE 74-75
3.3.2. 2D SDS-PAGE 75-76

3.4. Purification of Potent Protein 76-81
3.4.1. Materials 76-76
3.4.2. Extraction of Proteins 76-76
3.4.3. Protein Estimation 76-76
3.4.4. Ion Exchange Chromatography 77-78
 3.4.4.1. Sample preparation 77-77
 3.4.4.2. Preparation of column 77-77
 3.4.4.3. Sample loading & separation of biomolecules 78-78
3.4.5. Molecular Sieve Chromatography 79-79
 3.4.5.1. Preparation of the gel 79-79
 3.4.5.2. Column packing 79-79
 3.4.5.3. Sample loading & separation of biomolecules 79-79
3.4.6. RP-HPLC for Homogeneity 80-80
3.4.7. Tryptic in Gel-digestion of Purified Protein 80-80
3.4.8. Peptide Mass Fingerprinting by MALDI-TOF-MS 80-81

3.5. *In-Silico* Study 81-83
3.5.1. Materials 81-81
3.5.2. Homology Modelling and Structure Validation 81-82
3.5.3. Docking of Homology Model of Protein with Calcium Oxalate 82-82
3.5.4. Molecular Interaction of Calcium Oxalate Proteins 82-83
CHAPTER 4: RESULTS

4.1. EGTA Extraction of Proteins from Human Calcium Oxalate Renal Calculi

4.1.1. Protein concentration

4.1.2. Effect of whole extract and >3 kDa fraction on CaOx crystal nucleation and growth assay system

4.1.2.1. Effect of whole extract on CaOx crystal nucleation and growth assay system

4.1.2.2. Effect of >3 kDa on CaOx crystal nucleation and growth assay system

4.1.3. Bioactivity of >3 kDa fraction on Oxalate-induced Renal Tubular cell injury by MTT assay

4.1.4. Bioactivity of >3kDa fraction on Oxalate-induced Renal Tubular Epithelial cell injury by LDH assay

4.1.5. 1D SDS-PAGE of >3 kDa fraction of human renal stones

4.1.6. 2D SDS-PAGE of >3 kDa proteins from human renal stones

4.2. Protein Purification from Human Renal (CaOx) Stone

4.2.1. Purification and identification of potent proteins by anion exchange chromatography

4.2.1.1. Reduction of Oxalate-induced Renal Tubular Epithelial cell injury by Purified Protein (MTT ASSAY)

4.2.1.2. Reduction of Oxalate-induced Renal Tubular Epithelial cell injury by Purified Protein (SRB ASSAY)

4.2.1.3. Acridine Orange/Ethidium Bromide Staining To Detect Apoptosis

4.2.1.4. Mass spectrometric identification of proteins by MALDI-TOF MS

4.2.2. Purification and Identification of Potent Proteins by Cation Exchange Chromatography

4.2.2.1 Reduction of oxalate-induced renal tubular epithelial cell injury by purified protein
4.2.2.2 Reduction of Oxalate-induced Renal Tubular Epithelial cell injury by Purified Protein (MTT ASSAY)

4.2.2.3. Mass spectrometric identification of novel proteins by MALDI-TOF MS

4.3. In-Silico Study

4.3.1. Homology Modelling of Ethanolamine-phosphate cytidylyltransferase and Macrophage-capping protein; Molecular docking with Calcium Oxalate

4.3.2. Homology Modeling of Inward rectifier potassium channel and Histone Lysine N Methyl Transferase; Molecular docking with Calcium Oxalate

CHAPTER 5: DISCUSSION

CHAPTER 6: CONCLUSIONS

LIST OF PUBLICATIONS

REFERENCES