LIST OF FIGURES

Fig. 1.1 Structural formulas of several dyes

Fig. 1.2 Export and import amount of dyes in comparison to other chemicals.

Fig. 1.3 A schematic diagram and a photo of a laboratory scale upflow anaerobic sludge blanket reactor (UASB).

Fig. 1.4 Photo of a laboratory scale Sequential batch reactor (SBR)

Fig. 2.1 FTIR spectra of treated almond peel.

Fig. 2.2 Scanning electron micrographs of treated almond peel (a) before and (b) after adsorption.

Fig. 2.3 Effect of adsorption dose on % adsorption and adsorption capacity of BG on TAP at 50 °C

Fig. 2.4 Effect of pH

Fig. 2.5 Effect of contact time with different temperature

Fig. 2.6 Van’t Hoff plot for the adsorption.

Fig. 2.7 Langmuir plot for the adsorption of BG on TAP.

Fig. 2.8 Freundlich plot for the adsorption of BG on TAP.

Fig. 2.9 Representation of the kinetic data by pseudo-first order model

Fig. 2.10 Representation of the kinetic data by pseudo-second order model

Fig. 2.11 Breakthrough capacity curve for the adsorption of pure BG and effluent on TAP

Fig. 2.12 Desorption studies of BG and effluent adsorbed column by using 0.5M acetic acid as an eluent.

Fig 3.1 Scanning electron micrograph of water nut (a) before carbonification (b) after carbonification (Magnifications 2K)
Fig 3.2 FTIR spectra of water nut (a) before carbonification (b) after carbonification

Fig 3.3 Effect of pH (temp.-30±5 °C, pH-2 to12, solid ratio- 0.01 g WNMC/50ml dye, initial dye conc.- 10 mg L⁻¹)

Fig 3.4 Effect of adsorption dose (temp.- 30±5 °C, solid ratio- 0.005 to 0.05 g WNMC/50ml dye, initial dye conc.- 10 mg L⁻¹)

Fig 3.5 Representation of the kinetic data by the pseudo-first order model, pseudo-second order model and intraparticle diffusion (temp.- 30±5 °C, solid ratio-0.01 g WNMC/50ml dye, initial dye conc.-10 mg L⁻¹)

Fig 3.6 Isotherm model of MG and CV dye on WNMC (temp.- 20, 30 and 40 °C, solid ratio- 0.01 g WNMC/50ml dye, initial dye conc.-10 mg L⁻¹)

Fig 3.7 Breakthrough capacity of MG and CR, Condition: Flow rate-1ml/min, temp.-30±5 °C, dose-1 g, conc.-50 mg L⁻¹, 80 mg L⁻¹. (dia. 1cm)

Fig 3.8 Bed depth service model of MG and CR

Fig 3.9 Regeneration of spent adsorbent (flow rate-1ml/min, dose-1 g, dia.-1cm, temp.- 30±5 °C).

Fig 4.1 FTIR spectra of treated coconut hard shell

Fig 4.2 Scanning electron micrograph of (a) coconut hard shell and (b) treated coconut hard shell

Fig 4.3 Effect of pH (temp.-30±5 °C, pH- 2 to10, solid ratio- 0.05 g TCHS/50ml MB, initial MB conc.-10 mg L⁻¹)

Fig 4.4 Representation of the kinetics data by the pseudo-first order model, pseudo-second order model, elovitch equation, intraparticle diffusion and modified freundlich model (temperature- 30±5 °C, pH- 8, solid ratio- 0.05 g TCHS/50ml MB, initial MB conc.-10 mg L⁻¹)

Fig 4.5 Effect of temperature with different concentration (temp.-20, 30 and 40 °C, pH- 8, solid ratio- 0.05 g TCHS/50ml MB, initial MB conc.-5,10,15,20 mg L⁻¹).
Fig 4.6 Langmuir and Freundlich plot for the adsorption of MB on TCHS. (temp.- 20, 30 and 40 °C, pH- 8, solid ratio- 0.05 g TCHS/50ml MB, initial MB conc.-10 mg L⁻¹).

Fig 4.7 Breakthrough capacity at different dose (flow rate- 4ml min⁻¹, dose-0.5 g and 1 g, dia.-1cm, temp.- 30±5 °C, pH- 8, MB conc.- 10 mg L⁻¹).

Fig 4.8 Breakthrough capacity at different column dia. (dia.-0.4 and 1cm, dose-1 g, flow rate- 4ml min⁻¹, temp.-30±5 °C, pH- 8, MB conc.-10 mg L⁻¹).

Fig 4.9 Eluent volume (ml) vs. % adsorption (flow rate- 4 ml min⁻¹, dose-0.5 g, dia-0.4 cm, temp.- 30±5 °C).

Fig 4.10 % COD removal of pure solution and wastewater (solid ratio- 0.05 g TCHS/50ml MB and wastewater, contact time-210 min, temp.- 30±5 °C).

Fig 5.1 Schematic diagram of a sequential batch reactor.

Fig 5.2 SEM image of aerobic granules after 30 days (a-1.5 K, b-5 K).

Fig 5.3 Image of aerobic granules cultivated in the SBR.

Fig 5.4 Changes in the UV-vis spectra of malachite green by aerobic granules (Blue-0 hr, black- 4 hr, Brown- 8 hr).

Fig 5.5 Effects of solution pH on degradation of malachite green.

Fig 5.6 The time courses (day) of degradation of malachite green, at 25 °C under static conditions with sludge volume index.

Fig 5.7 The time courses (hr) of degradation of malachite green, at 25 °C under static conditions with an initial COD value of 2600 mg L⁻¹.

Fig. 6.1 Schematic diagram of a hybrid UASFB reactor.

Fig. 6.2 Scanning electron micrograph (SEM) of the anaerobic sludge.

Fig. 6.3 Proposed biodegradation pathways of crystal violet in UASFB reactor.
Fig. 6.4 UV-visible spectra of CV and degraded product, blue line –spectra of 100 mg L\(^{-1}\) CV (5 times dilute), dark yellow spectra -after UASB part of the reactor [Lamda max-232, Abs-1.966], Black spectra -After AF part of the reactor [Lamda max1-225, Abs-0.584]

Fig. 6.5 UASFB performance: methane gas production and % removal of CV, COD

Fig. 6.6 UASFB performance: difference of COD in influent and effluent and % COD removal

Fig. 7.1 Schematic diagram of the combined hybrid UASFB-aerobic reactor

Fig. 7.2 Scanning electron micrograph (SEM) of (a) anaerobic sludge and (b) aerobic sludge

Fig. 7.3 Methane production (L d\(^{-1}\)) with organic loading rate in UASFB reactor

Fig. 7.4 Removal of AY-36 and 4- ABS recovered in the experiment

Fig. 7.5 UV-visible spectra of AY-36 and degraded product, blue line –spectra of 100 mg L\(^{-1}\) AY-36 (5 times dilute), dark yellow spectra -after UASFB reactor [Lamda max-248, Abs-1.303], black spectra –after aerobic reactor [Lamda max1-245, Abs-0.523]

Fig. 7.6 Aerobic degradation of 4-ABS and sulfate production throughout the experiment