CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>i-iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>iv-vi</td>
</tr>
<tr>
<td>Chapter 1: INTRODUCTION</td>
<td>1-10</td>
</tr>
<tr>
<td>1.0 General introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. In vitro approaches</td>
<td>4</td>
</tr>
<tr>
<td>1.2. Cassia alata L.</td>
<td>7</td>
</tr>
<tr>
<td>1.2.1 Taxonomy and Systematic position</td>
<td>7</td>
</tr>
<tr>
<td>1.2.2 Synonyms</td>
<td>7</td>
</tr>
<tr>
<td>1.2.3 Common names</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4 Habitat</td>
<td>7</td>
</tr>
<tr>
<td>1.2.5 Morphological description</td>
<td>7</td>
</tr>
<tr>
<td>1.2.6 Active constituents</td>
<td>8</td>
</tr>
<tr>
<td>1.2.7 Medicinal properties and uses</td>
<td>8</td>
</tr>
<tr>
<td>1.2.8 Other uses</td>
<td>9</td>
</tr>
<tr>
<td>1.2.9 Conventional propagation methods and its limitations</td>
<td>9</td>
</tr>
<tr>
<td>1.2.10 Objectives</td>
<td>10</td>
</tr>
<tr>
<td>Chapter 2: REVIEW OF LITERATURE</td>
<td>11-39</td>
</tr>
<tr>
<td>2.1. Micropropagation</td>
<td>14</td>
</tr>
<tr>
<td>2.1.1. Direct plant regeneration</td>
<td>14</td>
</tr>
<tr>
<td>2.1.2. Multiple shoots from seed</td>
<td>15</td>
</tr>
<tr>
<td>2.2. Factors influencing in vitro adaptability and shoot regeneration</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1. Explant type</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2. Media type</td>
<td>18</td>
</tr>
<tr>
<td>2.2.3. Carbohydrate source</td>
<td>19</td>
</tr>
<tr>
<td>2.2.4. pH</td>
<td>20</td>
</tr>
<tr>
<td>2.2.5. Plant growth regulators</td>
<td>21</td>
</tr>
<tr>
<td>2.2.5.1. Effect of Cytokinins</td>
<td>22</td>
</tr>
<tr>
<td>2.2.5.2. Effect of TDZ</td>
<td>24</td>
</tr>
</tbody>
</table>
2.2.5.3. Auxins 26
2.2.5.4. Combined effect of Cytokinins and auxins 27
2.3. Subculture passages 28
2.4. Rooting 29
2.5. Synthetic seeds production 31
2.6. Acclimatization 32
2.7. Physiological and Biochemical studies 33
2.8. Clonal fidelity of micropropagated plants 37
2.8.1. RAPD-PCR markers 38
2.8.2. ISSR-PCR markers 39

Chapter 3: MATERIALS AND METHODS 40-64

3.1. Plant material and explant source 40
3.2. Surface sterilization 40
3.3. Establishment of aseptic seedlings and preparation of explants 40
3.4. Culture media 40
3.4.1. Composition of basal media 41
3.4.2. Preparation of stock solutions 41
3.4.3. Plant growth regulators 44
3.4.4. Adjustment of pH adjustment, gelling of medium, carbon sources 44
3.4.5. Preparation of medium 44
3.5. Sterilization 44
3.5.1. Sterilization of medium 44
3.5.2. Sterilization of glasswares and instruments 45
3.5.3. Sterilization of laminar air flow hood 45
3.6. Inoculation and culture conditions 45
3.7. Rooting 45
3.8. Acclimatization and hardening of plantlets 46
3.9. Synthetic seed production 46
3.9.1. Explant source 46
3.9.2. Enveloped matrix
3.9.3. Encapsulation
3.9.4. Planting media and culture conditions
3.9.5. Low temperature storage
3.10. Physiological and biochemical studies
3.10.1. Chlorophyll and carotenoid content estimation
3.10.1.1. Procedure and estimation
3.10.2. Assessment of antioxidant enzyme activities
3.10.2.1. Superoxide dismutase (SOD)
3.10.2.1.1. Preparation of reagents
3.10.2.1.2. Enzyme extraction and assay
3.10.2.2. Catalase (CAT)
3.10.2.2.1. Preparation of reagents
3.10.2.2.2. Enzyme extraction and assay
3.10.2.3. Ascorbate peroxidase (APX)
3.10.2.3.1. Preparation of reagents
3.10.2.3.2. Enzyme extraction and assay
3.10.3.4. Glutathione reductase (GR)
3.10.3.4.1. Preparation of reagents
3.10.3.4.2. Enzyme extraction and assay
3.10.3.5. Soluble protein
3.10.3.5.1. Preparation of reagents
3.10.3.5.2. Extraction and estimation of total soluble protein
3.11. Anatomical studies
3.11.1. Fixation and storage of plant material
3.11.2. Embedding, sectioning and staining
3.12. Chemicals and glasswares used
3.13. Statistical Analysis
3.14. Genomic DNA isolation and purification
3.14.1. Preparation of stock solutions required for DNA extraction
3.14.2. DNA extraction and purification protocol
3.14.3. Quantitative and qualitative assessment of genomic DNA
3.14.3.1. Quantification 59
3.14.3.2. Quality analysis 59
3.14.3.2.1. Solutions for agarose gel electrophoresis 59
* Running buffer (1 X TBE) 59
* Gel loading dye (6 X) 59
* Gel staining dye 60
3.14.3.2.2. Agarose gel electrophoresis 60
3.15. PCR amplification of DNA using RAPD/ISSR primers 60
3.15.1. PCR amplification 63
3.15.2. ISSR- PCR with genomic DNA 63
3.15.3. RAPD-PCR with genomic DNA 63
3.15.4. Analysis of PCR products by agarose gel electrophoresis 64
3.15.5. Data scoring and analysis 64

Chapter 4: RESULTS (including Tables and Figures) 65-125
4.1. Direct shoot regeneration 65
4.1.1. Establishment of aseptic seedling 65
4.1.2. Regeneration from cotyledonary node (CN) 65
explants excised from 15 days old aseptic seedlings
4.1.2.1. Effect of cytokinins 66
4.1.2.2. Combined effect of cytokinin and auxin 67
4.1.2.3. Effect of medium pH 71
4.1.2.4. Effect of different media and strength 72
4.1.2.5. Effect of Sucrose 74
4.1.2.6. Effect of TDZ and exposure duration 75
4.1.2.7. Effect of Subculturing 78
4.1.3. Regeneration from nodal explants (AN) 79
excised from 20 days old aseptic seedlings
4.1.3.1. Effect of cytokinins 79
4.1.3.2. Effect of combination of cytokinins and auxins 80
4.1.3.3. Effect of TDZ and exposure duration 85
4.1.3.4. Effect of subculture passage 89
4.1.4. Regeneration from shoot tip (ST) explants excised from 20 days old aseptic seedlings 90
4.1.4.1. Effect of cytokinin 90
4.1.4.2. Synergistic effect of cytokinins and auxins 92
4.1.4.3. Effect of subculturing passage 95
4.1.4.4. Effect of TDZ 97
4.1.4.5. Effect of subculturing 98
4.2. Induction of multiple shoots from intact seedlings 99
4.2.1. Effect of BA, Kn and TDZ on seed germination 99
4.2.2. Effect of TDZ on shoot proliferation and multiplication 100
4.3. Regeneration from mature nodal explants excised from 5 year-old plant 103
4.3.1. Effect of cytokinins 103
4.3.2. Synergistic effect of cytokinins and auxins 104
4.3.3. Effect of TDZ 108
4.4. Rooting 111
4.4.1. In vitro rooting 111
4.4.2. Ex vitro rooting 114
4.5. Acclimatization 114
4.6. Synthetic seeds 115
4.6.1. Effect of alginate concentration on bead formation 115
4.6.2. Plantlets regeneration from alginate encapsulated nodal segments 117
4.6.3. Low temperature storage 117
4.6.4. Rooting in synthetic seeds and establishment of plants in soil 120
4.7. Assessment of physiological and biochemical parameters 120
4.8. Assessment of antioxidant enzymes activities 120
4.9. Clonal fidelity analysis in TC-raised plantlets derived from mature nodal explants using molecular markers (RAPD and ISSR) 124
4.9.1. ISSR analysis among mature nodal derived regenerants 124

4.9.2. RAPD analysis among mature nodal derived regenerants 124

Chapter 5: DISCUSSION 127-150

5.1. Seeds germination 128

5.2. Direct plant regeneration 129

5.2.1. Explant types 129

5.2.2. Plant Growth Regulators 131

5.2.3. Effect of TDZ 133

5.2.4. Effect of different media, sucrose concentrations and pH levels 135

5.2.5. In vitro shoot regeneration from seed explants 137

5.2.6. Effect of subculture passages on shoot proliferation 139

5.3. Histological analysis 139

5.4. Rooting 140

5.4.1. In vitro rooting 140

5.4.2. Ex vitro rooting 141

5.5. Synthetic seeds 142

5.6. Acclimatization 144

5.7. Physiological studies 146

5.8. Biochemical studies 147

5.9. Assessment of genetic fidelity 148

Chapter 6: SUMMARY AND CONCLUSIONS 151-155

REFERENCES 156-194